Analysing the Analysers: An Investigation of Source Code Analysis Tools.

Saved in:
Bibliographic Details
Title: Analysing the Analysers: An Investigation of Source Code Analysis Tools.
Authors: Bhutani, Vikram, Toosi, Farshad Ghassemi, Buckley, Jim
Source: Applied Computer Systems; Jun2024, Vol. 29 Issue 1, p98-111, 14p
Subject Terms: ARTIFICIAL intelligence, COMPUTER software quality control, PROGRAMMING languages, SOURCE code, SYSTEMS software
Abstract: The primary expectation from a software system revolves around its functionality. However, as the software development process advances, equal emphasis is placed on the quality of the software system for non-functional attributes like maintainability and performance. Tools are available to aid in this endeavour, assessing the quality of a software system from multiple perspectives. This study aims to perform a comprehensive analysis of a particular set of source code analytical tools by examining diverse perspectives found in the literature and documentations. Given the vast array of programming languages available today, selecting appropriate source-code analytical tools presents a significant challenge. Therefore, this analysis aims to provide general insights to aid in selecting a more suitable analytical tool tailored to specific requirements. Seven prominent static analysis tools, namely SonarQube, Coverty, CodeSonar, Snyk Code, ESLint, Klocwork, and PMD, were chosen based on their prevalence in the literature and recognition in the software development community. To systematically categorise and organise their distinctive features and capabilities, a taxonomy was developed. This taxonomy covers crucial dimensions, including input support, technology employed, extensibility, user experience, rules, configurability, and supported languages. The comparative analysis highlights the distinctive strengths of each tool. SonarQube stands out as a comprehensive solution with a hybrid approach supporting static and dynamic code evaluations, accommodating multiple languages and integrating with popular Integrated Development Environments (IDEs). Coverity excels in identifying security vulnerabilities and defects, making it an excellent choice for security -focused development. CodeSonar prioritises code security and safety, offering a robust analysis. Snyk Code and ESLint, focusing on JavaScript, emphasise code quality and standards adherence. Klocwork is exceptional in defect detection and security analysis for C, C++, and Java. Lastly, PMD specialises in Java, emphasising code style and best practices. [ABSTRACT FROM AUTHOR]
Copyright of Applied Computer Systems is the property of Sciendo and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:The primary expectation from a software system revolves around its functionality. However, as the software development process advances, equal emphasis is placed on the quality of the software system for non-functional attributes like maintainability and performance. Tools are available to aid in this endeavour, assessing the quality of a software system from multiple perspectives. This study aims to perform a comprehensive analysis of a particular set of source code analytical tools by examining diverse perspectives found in the literature and documentations. Given the vast array of programming languages available today, selecting appropriate source-code analytical tools presents a significant challenge. Therefore, this analysis aims to provide general insights to aid in selecting a more suitable analytical tool tailored to specific requirements. Seven prominent static analysis tools, namely SonarQube, Coverty, CodeSonar, Snyk Code, ESLint, Klocwork, and PMD, were chosen based on their prevalence in the literature and recognition in the software development community. To systematically categorise and organise their distinctive features and capabilities, a taxonomy was developed. This taxonomy covers crucial dimensions, including input support, technology employed, extensibility, user experience, rules, configurability, and supported languages. The comparative analysis highlights the distinctive strengths of each tool. SonarQube stands out as a comprehensive solution with a hybrid approach supporting static and dynamic code evaluations, accommodating multiple languages and integrating with popular Integrated Development Environments (IDEs). Coverity excels in identifying security vulnerabilities and defects, making it an excellent choice for security -focused development. CodeSonar prioritises code security and safety, offering a robust analysis. Snyk Code and ESLint, focusing on JavaScript, emphasise code quality and standards adherence. Klocwork is exceptional in defect detection and security analysis for C, C++, and Java. Lastly, PMD specialises in Java, emphasising code style and best practices. [ABSTRACT FROM AUTHOR]
ISSN:22558683
DOI:10.2478/acss-2024-0013