Podrobná bibliografia
| Názov: |
Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning. |
| Autori: |
Gao, Qiang, Jiang, Man |
| Zdroj: |
Scientometrics; Jul2024, Vol. 129 Issue 7, p4043-4070, 28p |
| Abstrakt: |
As a driving force behind innovation, technological fusion has emerged as a prevailing trend in knowledge innovation. However, current research lacks the semantic analysis and identification of knowledge fusion across technological domains. To bridge this gap, we propose a strategy that combines the latent Dirichlet allocation (LDA) topic model and the Doc2vec neural network semantic model to identify fusion topics across various technology domains. Then, we fuse the semantic information of patents to measure the characteristics of fusion topics in terms of knowledge diversity, homogeneity and cohesion. Applying this method to a case study in the fields of digital medicine and machine learning, we identify six fusion topics from two technology domains, revealing two distinct trends: diffusion from the center to the periphery and clustering from the periphery to the center. The study shows that the fusion measure of topic-semantic granularity can reveal the variability of technology fusion processes at a profound level. The proposed research method will benefit scholars in conducting multi-domain technology fusion research and gaining a deeper understanding of the knowledge fusion process across technology domains from a semantic perspective. [ABSTRACT FROM AUTHOR] |
|
Copyright of Scientometrics is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáza: |
Complementary Index |