Multi-User Computation Offloading and Resource Allocation Algorithm in a Vehicular Edge Network.

Uloženo v:
Podrobná bibliografie
Název: Multi-User Computation Offloading and Resource Allocation Algorithm in a Vehicular Edge Network.
Autoři: Liu, Xiangyan, Zheng, Jianhong, Zhang, Meng, Li, Yang, Wang, Rui, He, Yun
Zdroj: Sensors (14248220); Apr2024, Vol. 24 Issue 7, p2205, 19p
Témata: REINFORCEMENT learning, RESOURCE allocation, MACHINE learning, DEEP reinforcement learning, EDGE computing, NONLINEAR programming, ALGORITHMS
Abstrakt: In Vehicular Edge Computing Network (VECN) scenarios, the mobility of vehicles causes the uncertainty of channel state information, which makes it difficult to guarantee the Quality of Service (QoS) in the process of computation offloading and the resource allocation of a Vehicular Edge Computing Server (VECS). A multi-user computation offloading and resource allocation optimization model and a computation offloading and resource allocation algorithm based on the Deep Deterministic Policy Gradient (DDPG) are proposed to address this problem. Firstly, the problem is modeled as a Mixed Integer Nonlinear Programming (MINLP) problem according to the optimization objective of minimizing the total system delay. Then, in response to the large state space and the coexistence of discrete and continuous variables in the action space, a reinforcement learning algorithm based on DDPG is proposed. Finally, the proposed method is used to solve the problem and compared with the other three benchmark schemes. Compared with the baseline algorithms, the proposed scheme can effectively select the task offloading mode and reasonably allocate VECS computing resources, ensure the QoS of task execution, and have a certain stability and scalability. Simulation results show that the total completion time of the proposed scheme can be reduced by 24–29% compared with the existing state-of-the-art techniques. [ABSTRACT FROM AUTHOR]
Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:In Vehicular Edge Computing Network (VECN) scenarios, the mobility of vehicles causes the uncertainty of channel state information, which makes it difficult to guarantee the Quality of Service (QoS) in the process of computation offloading and the resource allocation of a Vehicular Edge Computing Server (VECS). A multi-user computation offloading and resource allocation optimization model and a computation offloading and resource allocation algorithm based on the Deep Deterministic Policy Gradient (DDPG) are proposed to address this problem. Firstly, the problem is modeled as a Mixed Integer Nonlinear Programming (MINLP) problem according to the optimization objective of minimizing the total system delay. Then, in response to the large state space and the coexistence of discrete and continuous variables in the action space, a reinforcement learning algorithm based on DDPG is proposed. Finally, the proposed method is used to solve the problem and compared with the other three benchmark schemes. Compared with the baseline algorithms, the proposed scheme can effectively select the task offloading mode and reasonably allocate VECS computing resources, ensure the QoS of task execution, and have a certain stability and scalability. Simulation results show that the total completion time of the proposed scheme can be reduced by 24–29% compared with the existing state-of-the-art techniques. [ABSTRACT FROM AUTHOR]
ISSN:14248220
DOI:10.3390/s24072205