A Survey of Learning-based Automated Program Repair.

Saved in:
Bibliographic Details
Title: A Survey of Learning-based Automated Program Repair.
Authors: Zhang, Quanjun, Fang, Chunrong, Ma, Yuxiang, Sun, Weisong, Chen, Zhenyu
Source: ACM Transactions on Software Engineering & Methodology; Feb2024, Vol. 33 Issue 2, p1-69, 69p
Subject Terms: MACHINE translating, SOFTWARE maintenance, COMPUTER software development, OPEN scholarship, REPAIRING, SOFTWARE engineering, QUALITY function deployment, DEEP learning
Abstract: Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this article, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our article can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at the repository: https://github.com/iSEngLab/AwesomeLearningAPR. [ABSTRACT FROM AUTHOR]
Copyright of ACM Transactions on Software Engineering & Methodology is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this article, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our article can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at the repository: https://github.com/iSEngLab/AwesomeLearningAPR. [ABSTRACT FROM AUTHOR]
ISSN:1049331X
DOI:10.1145/3631974