Bibliographic Details
| Title: |
Biophilic classroom environments on stress and cognitive performance: A randomized crossover study in virtual reality (VR). |
| Authors: |
You, Jicheng, Wen, Xinyi, Liu, Linxin, Yin, Jie, Ji, John S. |
| Source: |
PLoS ONE; 11/1/2023, Vol. 18 Issue 11, p1-22, 22p |
| Subject Terms: |
VIRTUAL classrooms, VIRTUAL reality, COGNITIVE ability, CLASSROOM environment, HEART beat, COGNITIVE testing |
| Geographic Terms: |
CHINA |
| Abstract: |
The emerging Metaverse will likely increase time expenditure in indoor virtual environments, which could impact human health and well-being. The biophilia hypothesis suggests that humans have an innate tendency to seek connections with the natural world and there is increasing evidence that biophilic design such as the incorporation of green plants can yield health benefits. Recently, virtual reality (VR) has been used to regulate stress and improve overall wellness, particularly by incorporating natural settings. In this randomized crossover study, we designed five virtual classroom scenes with different biophilic elements and turbidity in VR and investigated whether the visual stimulations can affect the stress levels and cognitive functions of 30 young adults from a university in China. We measured their physiological indicators of stress reaction by wearable biomonitoring sensors (blood pressure (BP), heart rate (HR), heart rate variability (HRV), and skin conductance level (SCL)), conducted verbal cognitive tests on attention and creativity, and evaluated subjective/perceived (self-reported) stress levels and connection with nature. Albeit our results suggested no significant change in physiological stress reactions or cognitive functions induced by the biophilic and turbid interventions in VR, the addition of biophilic elements in the Metaverse could benefit students' health due to significantly decreased perceived stress levels and increased connections with nature. [ABSTRACT FROM AUTHOR] |
|
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |