Bibliographic Details
| Title: |
Statistical learning and big data applications. |
| Authors: |
Witte, Harald, Blatter, Tobias U., Nagabhushana, Priyanka, Schär, David, Ackermann, James, Cadamuro, Janne, Leichtle, Alexander B. |
| Source: |
Journal of Laboratory Medicine; Aug2023, Vol. 47 Issue 4, p181-186, 6p |
| Subject Terms: |
CLINICAL pathology, PRIVACY, CLINICAL decision support systems, MACHINE learning, SMARTPHONES, ARTIFICIAL intelligence, INDIVIDUALIZED medicine, LEARNING strategies, MEDICAL ethics, DATA analytics, STATISTICAL models |
| Abstract: |
The amount of data generated in the field of laboratory medicine has grown to an extent that conventional laboratory information systems (LISs) are struggling to manage and analyze this complex, entangled information ("Big Data"). Statistical learning, a generalized framework from machine learning (ML) and artificial intelligence (AI) is predestined for processing "Big Data" and holds the potential to revolutionize the field of laboratory medicine. Personalized medicine may in particular benefit from AI-based systems, especially when coupled with readily available wearables and smartphones which can collect health data from individual patients and offer new, cost-effective access routes to healthcare for patients worldwide. The amount of personal data collected, however, also raises concerns about patient-privacy and calls for clear ethical guidelines for "Big Data" research, including rigorous quality checks of data and algorithms to eliminate underlying bias and enable transparency. Likewise, novel federated privacy-preserving data processing approaches may reduce the need for centralized data storage. Generative AI-systems including large language models such as ChatGPT currently enter the stage to reshape clinical research, clinical decision-support systems, and healthcare delivery. In our opinion, AI-based systems have a tremendous potential to transform laboratory medicine, however, their opportunities should be weighed against the risks carefully. Despite all enthusiasm, we advocate for stringent added-value assessments, just as for any new drug or treatment. Human experts should carefully validate AI-based systems, including patient-privacy protection, to ensure quality, transparency, and public acceptance. In this opinion paper, data prerequisites, recent developments, chances, and limitations of statistical learning approaches are highlighted. [ABSTRACT FROM AUTHOR] |
|
Copyright of Journal of Laboratory Medicine is the property of De Gruyter and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |