Rational Regulation of Organic Spacer Cations for Quasi‐2D Perovskite Solar Cells.

Uloženo v:
Podrobná bibliografie
Název: Rational Regulation of Organic Spacer Cations for Quasi‐2D Perovskite Solar Cells.
Autoři: Lai, Hongtao, Xu, Zhiyuan, Shao, Zhihui, Cui, Bing, Tian, Binqiang, Wang, Huanhuan, Fu, Qiang
Zdroj: Solar RRL; May2023, Vol. 7 Issue 10, p1-8, 8p
Témata: SOLAR cells, PEROVSKITE, CRYSTAL orientation, CRYSTAL growth, PHOTOVOLTAIC power systems, CATIONS
Abstrakt: Quasi‐two‐dimensional perovskite solar cells (quasi‐2D PSCs) have drawn significant attention and are rapidly developing owing to the impressive stability of the materials and devices. However, there are no reliable guidelines for designing and selecting suitable organic spacer cations to achieve high power conversion efficiency (PCE) in quasi‐2D PSCs. Herein, the effects of the spacer cations with different substituents, i.e., benzylamine (PMA), 4‐methoxybenzylamine (p‐MeOPMA), and 4‐fluorobenzylamine (p‐FPMA), on the optoelectronic properties and device performance of quasi‐2D perovskites are systematically investigated. It is found that the spacer cations with different substituents mainly affect the crystal growth and film quality of quasi‐2D perovskites. Interestingly, quasi‐2D perovskites based on p‐MeOPMA or p‐FPMA exhibit poor crystallinity and crystal orientation, while quasi‐2D perovskite based on the unsubstituted PMA shows improved crystallinity and crystal orientation, which enables suppressed trap densities and efficient charge transport. The PMA‐based quasi‐2D perovskite (nominal n = 3) solar cell exhibits the highest PCE of 13.58%. These results demonstrate that the rational regulation of organic spacer cations plays a crucial role in improving the crystallinity and crystal orientation of perovskite films and elucidate key guiding rules for organic spacer cations for high‐performance quasi‐2D PSCs. [ABSTRACT FROM AUTHOR]
Copyright of Solar RRL is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:Quasi‐two‐dimensional perovskite solar cells (quasi‐2D PSCs) have drawn significant attention and are rapidly developing owing to the impressive stability of the materials and devices. However, there are no reliable guidelines for designing and selecting suitable organic spacer cations to achieve high power conversion efficiency (PCE) in quasi‐2D PSCs. Herein, the effects of the spacer cations with different substituents, i.e., benzylamine (PMA), 4‐methoxybenzylamine (p‐MeOPMA), and 4‐fluorobenzylamine (p‐FPMA), on the optoelectronic properties and device performance of quasi‐2D perovskites are systematically investigated. It is found that the spacer cations with different substituents mainly affect the crystal growth and film quality of quasi‐2D perovskites. Interestingly, quasi‐2D perovskites based on p‐MeOPMA or p‐FPMA exhibit poor crystallinity and crystal orientation, while quasi‐2D perovskite based on the unsubstituted PMA shows improved crystallinity and crystal orientation, which enables suppressed trap densities and efficient charge transport. The PMA‐based quasi‐2D perovskite (nominal n = 3) solar cell exhibits the highest PCE of 13.58%. These results demonstrate that the rational regulation of organic spacer cations plays a crucial role in improving the crystallinity and crystal orientation of perovskite films and elucidate key guiding rules for organic spacer cations for high‐performance quasi‐2D PSCs. [ABSTRACT FROM AUTHOR]
ISSN:2367198X
DOI:10.1002/solr.202300132