Multimodal Sensor-Input Architecture with Deep Learning for Audio-Visual Speech Recognition in Wild.

Saved in:
Bibliographic Details
Title: Multimodal Sensor-Input Architecture with Deep Learning for Audio-Visual Speech Recognition in Wild.
Authors: He, Yibo, Seng, Kah Phooi, Ang, Li Minn
Source: Sensors (14248220); Feb2023, Vol. 23 Issue 4, p1834, 12p
Subject Terms: DEEP learning, SPEECH perception, AUTOMATIC speech recognition, GENERATIVE adversarial networks, HUMAN voice, STREAMING audio
Abstract: This paper investigates multimodal sensor architectures with deep learning for audio-visual speech recognition, focusing on in-the-wild scenarios. The term "in the wild" is used to describe AVSR for unconstrained natural-language audio streams and video-stream modalities. Audio-visual speech recognition (AVSR) is a speech-recognition task that leverages both an audio input of a human voice and an aligned visual input of lip motions. However, since in-the-wild scenarios can include more noise, AVSR's performance is affected. Here, we propose new improvements for AVSR models by incorporating data-augmentation techniques to generate more data samples for building the classification models. For the data-augmentation techniques, we utilized a combination of conventional approaches (e.g., flips and rotations), as well as newer approaches, such as generative adversarial networks (GANs). To validate the approaches, we used augmented data from well-known datasets (LRS2—Lip Reading Sentences 2 and LRS3) in the training process and testing was performed using the original data. The study and experimental results indicated that the proposed AVSR model and framework, combined with the augmentation approach, enhanced the performance of the AVSR framework in the wild for noisy datasets. Furthermore, in this study, we discuss the domains of automatic speech recognition (ASR) architectures and audio-visual speech recognition (AVSR) architectures and give a concise summary of the AVSR models that have been proposed. [ABSTRACT FROM AUTHOR]
Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:This paper investigates multimodal sensor architectures with deep learning for audio-visual speech recognition, focusing on in-the-wild scenarios. The term "in the wild" is used to describe AVSR for unconstrained natural-language audio streams and video-stream modalities. Audio-visual speech recognition (AVSR) is a speech-recognition task that leverages both an audio input of a human voice and an aligned visual input of lip motions. However, since in-the-wild scenarios can include more noise, AVSR's performance is affected. Here, we propose new improvements for AVSR models by incorporating data-augmentation techniques to generate more data samples for building the classification models. For the data-augmentation techniques, we utilized a combination of conventional approaches (e.g., flips and rotations), as well as newer approaches, such as generative adversarial networks (GANs). To validate the approaches, we used augmented data from well-known datasets (LRS2—Lip Reading Sentences 2 and LRS3) in the training process and testing was performed using the original data. The study and experimental results indicated that the proposed AVSR model and framework, combined with the augmentation approach, enhanced the performance of the AVSR framework in the wild for noisy datasets. Furthermore, in this study, we discuss the domains of automatic speech recognition (ASR) architectures and audio-visual speech recognition (AVSR) architectures and give a concise summary of the AVSR models that have been proposed. [ABSTRACT FROM AUTHOR]
ISSN:14248220
DOI:10.3390/s23041834