Review and comparison of treatment effect estimators using propensity and prognostic scores.

Gespeichert in:
Bibliographische Detailangaben
Titel: Review and comparison of treatment effect estimators using propensity and prognostic scores.
Autoren: Lee, Myoung-Jae, Lee, Sanghyeok
Quelle: International Journal of Biostatistics; Nov2022, Vol. 18 Issue 2, p357-380, 24p
Schlagwörter: TREATMENT effectiveness, PROPENSITY score matching, PROGNOSTIC models
Abstract: In finding effects of a binary treatment, practitioners use mostly either propensity score matching (PSM) or inverse probability weighting (IPW). However, many new treatment effect estimators are available now using propensity score and "prognostic score", and some of these estimators are much better than PSM and IPW in several aspects. In this paper, we review those recent treatment effect estimators to show how they are related to one another, and why they are better than PSM and IPW. We compare 26 estimators in total through extensive simulation and empirical studies. Based on these, we recommend recent treatment effect estimators using "overlap weight", and "targeted MLE" using statistical/machine learning, as well as a simple regression imputation/adjustment estimator using linear prognostic score models. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Biostatistics is the property of De Gruyter and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:In finding effects of a binary treatment, practitioners use mostly either propensity score matching (PSM) or inverse probability weighting (IPW). However, many new treatment effect estimators are available now using propensity score and "prognostic score", and some of these estimators are much better than PSM and IPW in several aspects. In this paper, we review those recent treatment effect estimators to show how they are related to one another, and why they are better than PSM and IPW. We compare 26 estimators in total through extensive simulation and empirical studies. Based on these, we recommend recent treatment effect estimators using "overlap weight", and "targeted MLE" using statistical/machine learning, as well as a simple regression imputation/adjustment estimator using linear prognostic score models. [ABSTRACT FROM AUTHOR]
ISSN:15574679
DOI:10.1515/ijb-2021-0005