Bibliographic Details
| Title: |
An optimized cost-based data allocation model for heterogeneous distributed computing systems. |
| Authors: |
Tarun, Sashi, Dubey, Mithilesh Kumar, Batth, Ranbir Singh, Kaur, Sukhpreet |
| Source: |
International Journal of Electrical & Computer Engineering (2088-8708); Dec2022, Vol. 12 Issue 6, p6373-6386, 14p |
| Subject Terms: |
HETEROGENEOUS distributed computing, SWARM intelligence, DIRECTED acyclic graphs, ARCHITECTURAL models |
| Abstract: |
Continuous attempts have been made to improve the flexibility and effectiveness of distributed computing systems. Extensive effort in the fields of connectivity technologies, network programs, high processing components, and storage helps to improvise results. However, concerns such as slowness in response, long execution time, and long completion time have been identified as stumbling blocks that hinder performance and require additional attention. These defects increased the total system cost and made the data allocation procedure for a geographically dispersed setup difficult. The load-based architectural model has been strengthened to improve data allocation performance. To do this, an abstract job model is employed, and a data query file containing input data is processed on a directed acyclic graph. The jobs are executed on the processing engine with the lowest execution cost, and the system's total cost is calculated. The total cost is computed by summing the costs of communication, computation, and network. The total cost of the system will be reduced using a Swarm intelligence algorithm. In heterogeneous distributed computing systems, the suggested approach attempts to reduce the system's total cost and improve data distribution. According to simulation results, the technique efficiently lowers total system cost and optimizes partitioned data allocation. [ABSTRACT FROM AUTHOR] |
|
Copyright of International Journal of Electrical & Computer Engineering (2088-8708) is the property of Institute of Advanced Engineering & Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |