Eye-referenced dynamic bounding box for face recognition using light convolutional neural network.

Gespeichert in:
Bibliographische Detailangaben
Titel: Eye-referenced dynamic bounding box for face recognition using light convolutional neural network.
Autoren: Kapse, Manish N., Kumar, Sunil
Quelle: Intelligent Decision Technologies; 2022, Vol. 16 Issue 2, p369-377, 9p
Schlagwörter: CONVOLUTIONAL neural networks, HUMAN facial recognition software, FACE, FACE perception
Abstract: Face recognition systems have imprinted its presence in many applications from offices to security to daily use as in personal digital gadgets. With many Face recognition systems in use, still there is scope for its performance improvement. The performance of such systems suffers due to presence of covariates like non-uniform illumination, pose deviations, occlusions, low resolution etc. Extracting the region of interest from input face images is very crucial steps in face recognition system. We proposed methodology to create a bounding box for every sample face image. This bounding box dynamically tries to fit the face image to cover the relevant face features useful for recognition purpose. We used a light CNN structure to perform the experiment on MUCT face dataset using three different methodologies for extracting region of interests from sample face images using bounding box. These are 1) min-max based ROI 2) OpenCV face alignment and 3) eye-reference based ROI. It is observed that the proposed eye-reference based face alignment method works better than conventional methods of min-max based ROI and OpenCV face alignment with considerable amount of improvement in the recognition accuracy. Our future work includes use of other structured datasets with various covariates for face recognition. [ABSTRACT FROM AUTHOR]
Copyright of Intelligent Decision Technologies is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Face recognition systems have imprinted its presence in many applications from offices to security to daily use as in personal digital gadgets. With many Face recognition systems in use, still there is scope for its performance improvement. The performance of such systems suffers due to presence of covariates like non-uniform illumination, pose deviations, occlusions, low resolution etc. Extracting the region of interest from input face images is very crucial steps in face recognition system. We proposed methodology to create a bounding box for every sample face image. This bounding box dynamically tries to fit the face image to cover the relevant face features useful for recognition purpose. We used a light CNN structure to perform the experiment on MUCT face dataset using three different methodologies for extracting region of interests from sample face images using bounding box. These are 1) min-max based ROI 2) OpenCV face alignment and 3) eye-reference based ROI. It is observed that the proposed eye-reference based face alignment method works better than conventional methods of min-max based ROI and OpenCV face alignment with considerable amount of improvement in the recognition accuracy. Our future work includes use of other structured datasets with various covariates for face recognition. [ABSTRACT FROM AUTHOR]
ISSN:18724981
DOI:10.3233/IDT-210127