A new reconstruction of numerical fluxes for conservation laws using fuzzy operators.

Uloženo v:
Podrobná bibliografie
Název: A new reconstruction of numerical fluxes for conservation laws using fuzzy operators.
Autoři: Lochab, Ruchika, Kumar, Vivek
Zdroj: International Journal for Numerical Methods in Fluids; Jun2021, Vol. 93 Issue 6, p1690-1711, 22p
Témata: CONSERVATION laws (Physics), HYPERBOLIC differential equations, CONSERVATION laws (Mathematics), FUZZY mathematics, PARTIAL differential equations, OPERATOR functions
Abstrakt: This article develops a new hybrid flux-limited scheme for a numerical solution of the hyperbolic conservation laws by applying fuzzy logic-based operator functions. The construction of the proposed flux-limiter is explored using a fuzzy modifier function, having a suitable intensity. The purpose of this article is to present an efficient finite volume flux-limited technique, derived from an entirely different subject of fuzzy mathematics, for tackling hyperbolic partial differential equations. Several standard test cases in one and two dimensions are solved numerically for demonstrating the robustness of the proposed new hybrid flux-limited scheme. [ABSTRACT FROM AUTHOR]
Copyright of International Journal for Numerical Methods in Fluids is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:This article develops a new hybrid flux-limited scheme for a numerical solution of the hyperbolic conservation laws by applying fuzzy logic-based operator functions. The construction of the proposed flux-limiter is explored using a fuzzy modifier function, having a suitable intensity. The purpose of this article is to present an efficient finite volume flux-limited technique, derived from an entirely different subject of fuzzy mathematics, for tackling hyperbolic partial differential equations. Several standard test cases in one and two dimensions are solved numerically for demonstrating the robustness of the proposed new hybrid flux-limited scheme. [ABSTRACT FROM AUTHOR]
ISSN:02712091
DOI:10.1002/fld.4948