Bibliographic Details
| Title: |
Percentage porosity computation of three-dimensional non-convex porous geometries using the direct Monte Carlo simulation. |
| Authors: |
Campillo, Mauricio, Pérez, Pablo, Daher, Jorge, Pérez, Luis |
| Source: |
Engineering with Computers; Apr2021, Vol. 37 Issue 2, p951-973, 23p |
| Subject Terms: |
MONTE Carlo method, POROSITY, METAL foams, CONVEX geometry, GEOMETRY, PERCENTILES |
| Abstract: |
The pursuit of more representative numerical models for open-cell metallic foams requires the computation of volume and percentage porosity of geometries containing randomly distributed interconnected pores, which is one of the main characteristics that determines its mechanical properties. From a mathematical standpoint, the analytical definition of foam geometries forms a three-dimensional non-convex set. It is known that the volume computation of n-dimensional polytopes and sets is a P-hard problem. A common way to approach this problem is using the Monte Carlo techniques; however, efforts are oriented toward the treatment of convex polytopes and polyhedrons. In this article, the Direct Monte Carlo Simulation (DMCS) is used to compute the percentage porosity of three-dimensional non-convex sets. A single-thread Python code was implemented, and tests were run to estimate the percentage porosity of three-dimensional open-cell porous geometries. Measurements of percentage porosity and runtime requirements over cubical and cylindrical geometries containing from 100 to 4000 overlapping spherical pores showed high accuracy and consistency in non-convex three-dimensional sets, while the proposed algorithm achieved a significant reduction in computing time with respect to the currently available method. In the same manner, results from the proposed algorithm were compared with a similar software available, showing a gain in both performance time and accuracy. [ABSTRACT FROM AUTHOR] |
|
Copyright of Engineering with Computers is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |