Improving Efficiency of Web Application Firewall to Detect Code Injection Attacks with Random Forest Method and Analysis Attributes HTTP Request.

Saved in:
Bibliographic Details
Title: Improving Efficiency of Web Application Firewall to Detect Code Injection Attacks with Random Forest Method and Analysis Attributes HTTP Request.
Authors: Thang, Nguyen Manh
Source: Programming & Computer Software; Sep2020, Vol. 46 Issue 5, p351-361, 11p
Subject Terms: WEB-based user interfaces, DENIAL of service attacks, HTTP (Computer network protocol), COMPUTER networks, SYSTEM administrators, COMPUTER systems
Abstract: In the era of information technology, the use of computer technology for both work and personal use is growing rapidly with time. Unfortunately, with the increasing number and size of computer networks and systems, their vulnerability also increases. Protecting web applications of organizations is becoming increasingly relevant as most of the transactions are carried out over the Internet. Traditional security devices control attacks at the network level, but modern web attacks occur through the HTTP protocol at the application level. On the other hand, the attacks often come together. For example, a denial of service attack is used to hide code injection attacks. The system administrator spends a lot of time to keep the system running, but they may forget the code injection attacks. Therefore, the main task for system administrators is to detect network attacks at the application level using a web application firewall and apply effective algorithms in this firewall to train web application firewalls automatically for increasing his efficiency. The article introduces parameterization of the task for increasing the accuracy of query classification by the random forest method, thereby creating the basis for detecting attacks at the application level. [ABSTRACT FROM AUTHOR]
Copyright of Programming & Computer Software is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:In the era of information technology, the use of computer technology for both work and personal use is growing rapidly with time. Unfortunately, with the increasing number and size of computer networks and systems, their vulnerability also increases. Protecting web applications of organizations is becoming increasingly relevant as most of the transactions are carried out over the Internet. Traditional security devices control attacks at the network level, but modern web attacks occur through the HTTP protocol at the application level. On the other hand, the attacks often come together. For example, a denial of service attack is used to hide code injection attacks. The system administrator spends a lot of time to keep the system running, but they may forget the code injection attacks. Therefore, the main task for system administrators is to detect network attacks at the application level using a web application firewall and apply effective algorithms in this firewall to train web application firewalls automatically for increasing his efficiency. The article introduces parameterization of the task for increasing the accuracy of query classification by the random forest method, thereby creating the basis for detecting attacks at the application level. [ABSTRACT FROM AUTHOR]
ISSN:03617688
DOI:10.1134/S0361768820050072