Spatio-temporal prediction model of out-of-hospital cardiac arrest: Designation of medical priorities and estimation of human resources requirement.

Saved in:
Bibliographic Details
Title: Spatio-temporal prediction model of out-of-hospital cardiac arrest: Designation of medical priorities and estimation of human resources requirement.
Authors: Auricchio, Angelo, Peluso, Stefano, Caputo, Maria Luce, Reinhold, Jost, Benvenuti, Claudio, Burkart, Roman, Cianella, Roberto, Klersy, Catherine, Baldi, Enrico, Mira, Antonietta
Source: PLoS ONE; 8/31/2020, Vol. 15 Issue 8, p1-13, 13p
Subject Terms: CARDIAC arrest, AUTOMATED external defibrillation, PREDICTION models, HUMAN capital, FORECASTING
Geographic Terms: GUANGZHOU (China), TICINO (Switzerland)
Abstract: Aims: To determine the out-of-hospital cardiac arrest (OHCA) rates and occurrences at municipality level through a novel statistical model accounting for temporal and spatial heterogeneity, space-time interactions and demographic features. We also aimed to predict OHCAs rates and number at municipality level for the upcoming years estimating the related resources requirement. Methods: All the consecutive OHCAs of presumed cardiac origin occurred from 2005 until 2018 in Canton Ticino region were included. We implemented an Integrated Nested Laplace Approximation statistical method for estimation and prediction of municipality OHCA rates, number of events and related uncertainties, using age and sex municipality compositions. Comparisons between predicted and real OHCA maps validated our model, whilst comparisons between estimated OHCA rates in different yeas and municipalities identified significantly different OHCA rates over space and time. Longer-time predicted OHCA maps provided Bayesian predictions of OHCA coverages in varying stressful conditions. Results: 2344 OHCAs were analyzed. OHCA incidence either progressively reduced or continuously increased over time in 6.8% of municipalities despite an overall stable spatio-temporal distribution of OHCAs. The predicted number of OHCAs accounts for 89% (2017) and 90% (2018) of the yearly variability of observed OHCAs with prediction error ≤1OHCA for each year in most municipalities. An increase in OHCAs number with a decline in the Automatic External Defibrillator availability per OHCA at region was estimated. Conclusions: Our method enables prediction of OHCA risk at municipality level with high accuracy, providing a novel approach to estimate resource allocation and anticipate gaps in demand in upcoming years. [ABSTRACT FROM AUTHOR]
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Aims: To determine the out-of-hospital cardiac arrest (OHCA) rates and occurrences at municipality level through a novel statistical model accounting for temporal and spatial heterogeneity, space-time interactions and demographic features. We also aimed to predict OHCAs rates and number at municipality level for the upcoming years estimating the related resources requirement. Methods: All the consecutive OHCAs of presumed cardiac origin occurred from 2005 until 2018 in Canton Ticino region were included. We implemented an Integrated Nested Laplace Approximation statistical method for estimation and prediction of municipality OHCA rates, number of events and related uncertainties, using age and sex municipality compositions. Comparisons between predicted and real OHCA maps validated our model, whilst comparisons between estimated OHCA rates in different yeas and municipalities identified significantly different OHCA rates over space and time. Longer-time predicted OHCA maps provided Bayesian predictions of OHCA coverages in varying stressful conditions. Results: 2344 OHCAs were analyzed. OHCA incidence either progressively reduced or continuously increased over time in 6.8% of municipalities despite an overall stable spatio-temporal distribution of OHCAs. The predicted number of OHCAs accounts for 89% (2017) and 90% (2018) of the yearly variability of observed OHCAs with prediction error ≤1OHCA for each year in most municipalities. An increase in OHCAs number with a decline in the Automatic External Defibrillator availability per OHCA at region was estimated. Conclusions: Our method enables prediction of OHCA risk at municipality level with high accuracy, providing a novel approach to estimate resource allocation and anticipate gaps in demand in upcoming years. [ABSTRACT FROM AUTHOR]
ISSN:19326203
DOI:10.1371/journal.pone.0238067