FiFTy: Large-Scale File Fragment Type Identification Using Convolutional Neural Networks.

Saved in:
Bibliographic Details
Title: FiFTy: Large-Scale File Fragment Type Identification Using Convolutional Neural Networks.
Authors: Mittal, Govind, Korus, Pawel, Memon, Nasir
Source: IEEE Transactions on Information Forensics & Security; 2020, Vol. 16 Issue 1, p28-41, 14p
Abstract: We present FiFTy, a modern file-type identification tool for memory forensics and data carving. In contrast to previous approaches based on hand-crafted features, we design a compact neural network architecture, which uses a trainable embedding space. Our approach dispenses with the explicit feature extraction which has been a bottleneck in legacy systems. We evaluate the proposed method on a novel dataset with 75 file-types – the most diverse and balanced dataset reported to date. FiFTy consistently outperforms all baselines in terms of speed, accuracy and individual misclassification rates. We achieved an average accuracy of 77.5% with processing speed of $\approx 38$ sec/GB, which is better and more than an order of magnitude faster than the previous state-of-the-art tool - Sceadan (69% at 9 min/GB). Our tool and the corresponding dataset is open-source. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Information Forensics & Security is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:We present FiFTy, a modern file-type identification tool for memory forensics and data carving. In contrast to previous approaches based on hand-crafted features, we design a compact neural network architecture, which uses a trainable embedding space. Our approach dispenses with the explicit feature extraction which has been a bottleneck in legacy systems. We evaluate the proposed method on a novel dataset with 75 file-types – the most diverse and balanced dataset reported to date. FiFTy consistently outperforms all baselines in terms of speed, accuracy and individual misclassification rates. We achieved an average accuracy of 77.5% with processing speed of $\approx 38$ sec/GB, which is better and more than an order of magnitude faster than the previous state-of-the-art tool - Sceadan (69% at 9 min/GB). Our tool and the corresponding dataset is open-source. [ABSTRACT FROM AUTHOR]
ISSN:15566013
DOI:10.1109/TIFS.2020.3004266