Epidemiological studies of natural sources of radiation and childhood cancer: current challenges and future perspectives.

Uložené v:
Podrobná bibliografia
Názov: Epidemiological studies of natural sources of radiation and childhood cancer: current challenges and future perspectives.
Autori: Mazzei-Abba, Antonella, Folly, Christophe L, Coste, Astrid, Wakeford, Richard, Little, Mark P, Raaschou-Nielsen, Ole, Kendall, Gerry, Hémon, Denis, Nikkilä, Atte, Spix, Claudia, Auvinen, Anssi, Spycher, Ben D
Zdroj: Journal of Radiological Protection; Mar2020, Vol. 40 Issue 1, p1-22, 22p
Predmety: RADIATION sources, BACKGROUND radiation, CHILDHOOD cancer, RADIATION exposure, STATISTICAL power analysis
Geografický termín: UNITED Kingdom
Abstrakt: The empirical estimation of cancer risks in children associated with low-dose ionising radiation (<100 mSv) remains a challenge. The main reason is that the required combination of large sample sizes with accurate and comprehensive exposure assessment is difficult to achieve. An international scientific workshop, 'Childhood cancer and background radiation', organised by the Institute of Social and Preventive Medicine of the University of Bern, brought together researchers in this field to evaluate how epidemiological studies of background radiation and childhood cancer can best improve our understanding of the effects of low-dose ionising radiation. This review summarises and evaluates the findings of these studies with regard to their methodological differences, identifies key limitations and challenges, and proposes ways to move forward. Large childhood cancer registries, such as those in Great Britain, France and Germany, now permit the conducting of studies that should have sufficient statistical power to detect the effects predicted by standard risk models. Nevertheless, larger studies or pooled studies will be needed to investigate disease subgroups. The main challenge is to accurately assess children's individual exposure to radiation from natural sources and from other sources, as well as potentially confounding non-radiation exposures, in such large study populations. For this, the study groups should learn from each other to improve exposure estimation and develop new ways to validate exposure models with personal dosimetry. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Radiological Protection is the property of IOP Publishing and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
Popis
Abstrakt:The empirical estimation of cancer risks in children associated with low-dose ionising radiation (<100 mSv) remains a challenge. The main reason is that the required combination of large sample sizes with accurate and comprehensive exposure assessment is difficult to achieve. An international scientific workshop, 'Childhood cancer and background radiation', organised by the Institute of Social and Preventive Medicine of the University of Bern, brought together researchers in this field to evaluate how epidemiological studies of background radiation and childhood cancer can best improve our understanding of the effects of low-dose ionising radiation. This review summarises and evaluates the findings of these studies with regard to their methodological differences, identifies key limitations and challenges, and proposes ways to move forward. Large childhood cancer registries, such as those in Great Britain, France and Germany, now permit the conducting of studies that should have sufficient statistical power to detect the effects predicted by standard risk models. Nevertheless, larger studies or pooled studies will be needed to investigate disease subgroups. The main challenge is to accurately assess children's individual exposure to radiation from natural sources and from other sources, as well as potentially confounding non-radiation exposures, in such large study populations. For this, the study groups should learn from each other to improve exposure estimation and develop new ways to validate exposure models with personal dosimetry. [ABSTRACT FROM AUTHOR]
ISSN:09524746
DOI:10.1088/1361-6498/ab5a38