High Responsivity and Wavelength Selectivity of GaN‐Based Resonant Cavity Photodiodes.

Uložené v:
Podrobná bibliografia
Názov: High Responsivity and Wavelength Selectivity of GaN‐Based Resonant Cavity Photodiodes.
Autori: Li, Jing, Yang, Chao, Liu, Lei, Cao, Haicheng, Lin, Shan, Xi, Xin, Li, Xiaodong, Ma, Zhanhong, Wang, Kaiyou, Patanè, Amalia, Zhao, Lixia
Zdroj: Advanced Optical Materials; 4/3/2020, Vol. 8 Issue 7, p1-7, 7p
Predmety: PHOTODIODES, WAVELENGTHS, INDIUM gallium nitride, LIGHT filters, VISIBLE spectra, ELECTROLUMINESCENCE
Abstrakt: The implementation of blue‐light photodiodes based on InGaN in emerging technologies, such as free‐space visible light communication (VLC), requires transformative approaches toward enhanced performance, miniaturization, and integration beyond current Si‐based technologies. This work reports on the design and realization of high‐performance InGaN‐based resonant cavity photodiodes with high‐reflectivity lateral porous GaN distributed Bragg reflectors. The well‐controlled porosification of GaN on the 2‐inch wafers enables design and fabrication of optical components, unlocking the potential of nitride semiconductors for several applications. These resonant‐cavity‐enhanced photodiodes, which have a 12 nm‐thick optically active region, exhibit a high responsivity (≈0.1 A W−1) to blue‐light even without any externally applied voltage. Furthermore, the device can operate as both an emitter and a detector of visible light at well‐defined wavelengths with spectral overlap between the electroluminescence emission and photocurrent responsivity, meeting the requirement of wavelength selectivity, thermal stability, and low‐power consumption for VLC, with potential for integration of different functionalities, that is, light emission and detection, on a single chip without additional light filters. [ABSTRACT FROM AUTHOR]
Copyright of Advanced Optical Materials is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
Popis
Abstrakt:The implementation of blue‐light photodiodes based on InGaN in emerging technologies, such as free‐space visible light communication (VLC), requires transformative approaches toward enhanced performance, miniaturization, and integration beyond current Si‐based technologies. This work reports on the design and realization of high‐performance InGaN‐based resonant cavity photodiodes with high‐reflectivity lateral porous GaN distributed Bragg reflectors. The well‐controlled porosification of GaN on the 2‐inch wafers enables design and fabrication of optical components, unlocking the potential of nitride semiconductors for several applications. These resonant‐cavity‐enhanced photodiodes, which have a 12 nm‐thick optically active region, exhibit a high responsivity (≈0.1 A W−1) to blue‐light even without any externally applied voltage. Furthermore, the device can operate as both an emitter and a detector of visible light at well‐defined wavelengths with spectral overlap between the electroluminescence emission and photocurrent responsivity, meeting the requirement of wavelength selectivity, thermal stability, and low‐power consumption for VLC, with potential for integration of different functionalities, that is, light emission and detection, on a single chip without additional light filters. [ABSTRACT FROM AUTHOR]
ISSN:21951071
DOI:10.1002/adom.201901276