Cynara cardunculus Crude Extract as a Powerful Natural Herbicide and Insight into the Mode of Action of Its Bioactive Molecules.

Saved in:
Bibliographic Details
Title: Cynara cardunculus Crude Extract as a Powerful Natural Herbicide and Insight into the Mode of Action of Its Bioactive Molecules.
Authors: Ben Kaab, Sofiene, Lins, Laurence, Hanafi, Marwa, Bettaieb Rebey, Iness, Deleu, Magali, Fauconnier, Marie-Laure, Ksouri, Riadh, Jijakli, M. Haissam, De Clerck, Caroline
Source: Biomolecules (2218-273X); Feb2020, Vol. 10 Issue 2, p209, 1p
Subject Terms: HERBICIDE resistance, CARDOON, PLANT plasma membranes, HERBICIDES, BIOACTIVE compounds, OXIDATIVE stress
Abstract: The use of chemical herbicides could not only potentially induce negative impacts on the environment, animals, and human health, but also increase the weed resistance to herbicides. In this context, the use of plant extracts could be an interesting and natural alternative to chemical products. It is important to understand the mode of action of their bioactive compounds. This is why we have studied the herbicidal effect of Cynara cardunculus crude extract in terms of inhibition of weeds' seedling growth and its impact on physiological parameters of treated plantlets, like conductivity, dry weight, and fluorescence, and biochemical parameters linked to oxidative stress. We have observed that C. cardunculus crude extract induces oxidative stress in the treated plants and consequently disturbs the physiological and biochemical functions of the plant cells. We have investigated the herbicidal activity of three bioactive compounds, naringenin, myricitrin, and quercetin, from the C. cardunculus crude extract. In both pre- and post-emergence trials, naringenin and myricitrin were significantly more phytotoxic than quercetin. We suggest that their differential initial interaction with the plant's plasma membrane could be one of the main signals for electrolyte leakage and production of high levels of phenoxyl radicals. [ABSTRACT FROM AUTHOR]
Copyright of Biomolecules (2218-273X) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:The use of chemical herbicides could not only potentially induce negative impacts on the environment, animals, and human health, but also increase the weed resistance to herbicides. In this context, the use of plant extracts could be an interesting and natural alternative to chemical products. It is important to understand the mode of action of their bioactive compounds. This is why we have studied the herbicidal effect of Cynara cardunculus crude extract in terms of inhibition of weeds' seedling growth and its impact on physiological parameters of treated plantlets, like conductivity, dry weight, and fluorescence, and biochemical parameters linked to oxidative stress. We have observed that C. cardunculus crude extract induces oxidative stress in the treated plants and consequently disturbs the physiological and biochemical functions of the plant cells. We have investigated the herbicidal activity of three bioactive compounds, naringenin, myricitrin, and quercetin, from the C. cardunculus crude extract. In both pre- and post-emergence trials, naringenin and myricitrin were significantly more phytotoxic than quercetin. We suggest that their differential initial interaction with the plant's plasma membrane could be one of the main signals for electrolyte leakage and production of high levels of phenoxyl radicals. [ABSTRACT FROM AUTHOR]
ISSN:2218273X
DOI:10.3390/biom10020209