Adjusted Empirical Likelihood Estimation of Distribution Function and Quantile with Nonignorable Missing Data.

Uložené v:
Podrobná bibliografia
Názov: Adjusted Empirical Likelihood Estimation of Distribution Function and Quantile with Nonignorable Missing Data.
Autori: Ding, Xianwen, Tang, Niansheng
Zdroj: Journal of Systems Science & Complexity; Jun2018, Vol. 31 Issue 3, p820-840, 21p
Abstrakt: This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented inverse probability weighted approach. The propensity score is specified by a semiparametric exponential tilting model. To estimate the tilting parameter in the propensity score, the authors propose an adjusted empirical likelihood method to deal with the over-identified system. Under some regular conditions, the authors investigate the asymptotic properties of the proposed three estimators for distribution functions and quantiles, and find that these estimators have the same asymptotic variance. The jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Systems Science & Complexity is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
Popis
Abstrakt:This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented inverse probability weighted approach. The propensity score is specified by a semiparametric exponential tilting model. To estimate the tilting parameter in the propensity score, the authors propose an adjusted empirical likelihood method to deal with the over-identified system. Under some regular conditions, the authors investigate the asymptotic properties of the proposed three estimators for distribution functions and quantiles, and find that these estimators have the same asymptotic variance. The jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. [ABSTRACT FROM AUTHOR]
ISSN:10096124
DOI:10.1007/s11424-018-6334-6