Bayesian empirical likelihood estimation of quantile structural equation models.

Uloženo v:
Podrobná bibliografie
Název: Bayesian empirical likelihood estimation of quantile structural equation models.
Autoři: Zhang, Yanqing, Tang, Niansheng
Zdroj: Journal of Systems Science & Complexity; Feb2017, Vol. 30 Issue 1, p122-138, 17p
Abstrakt: Structural equation model (SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM (QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood (BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Systems Science & Complexity is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:Structural equation model (SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM (QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood (BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies. [ABSTRACT FROM AUTHOR]
ISSN:10096124
DOI:10.1007/s11424-017-6254-x