Accurate Human Pose Estimation by Aggregating Multiple Pose Hypotheses Using Modified Kernel Density Approximation.

Saved in:
Bibliographic Details
Title: Accurate Human Pose Estimation by Aggregating Multiple Pose Hypotheses Using Modified Kernel Density Approximation.
Authors: Eunji Cho, Daijin Kim
Source: IEEE Signal Processing Letters; Apr2015, Vol. 22 Issue 4, p445-449, 5p
Subject Terms: POSE estimation (Computer vision), PROBABILITY density function, APPROXIMATION theory, HUMAN body, DYNAMIC programming
Abstract: This letter proposes an accurate human pose estimation method that uses a modified kernel density approximation (m-KDA) to multiple pose hypotheses. Existing methods show poor human pose estimation because of cluttered background or self-occlusion by the human. To improve the pose estimation accuracy, we propose to use m-KDA to aggregate multiple pose estimation results. First, we use the flexible mixture-of-parts model (FMM) to estimate the human poses then use the top-M scores to choose the good pose hypotheses. Second, we aggregate the top-M pose hypotheses with the m-KDA, in which each kernel density function is modified by each pose's score value and each pose's compatibility function that represents how far each pose hypothesis is departed from the nominal value of top-M pose hypotheses. Third, we determine the optimal pose configuration by repeating the above m-KDA computation, starting from the root part (head) to the leaf parts (hands and feet), sequentially. In pose estimation experiments on two benchmark datasets (PARSE and LSP), the proposed method achieved 1.5-4.0% improvement in the percentage of correct localized parts (PCP) over the state-of-the-art methods. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Signal Processing Letters is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:This letter proposes an accurate human pose estimation method that uses a modified kernel density approximation (m-KDA) to multiple pose hypotheses. Existing methods show poor human pose estimation because of cluttered background or self-occlusion by the human. To improve the pose estimation accuracy, we propose to use m-KDA to aggregate multiple pose estimation results. First, we use the flexible mixture-of-parts model (FMM) to estimate the human poses then use the top-M scores to choose the good pose hypotheses. Second, we aggregate the top-M pose hypotheses with the m-KDA, in which each kernel density function is modified by each pose's score value and each pose's compatibility function that represents how far each pose hypothesis is departed from the nominal value of top-M pose hypotheses. Third, we determine the optimal pose configuration by repeating the above m-KDA computation, starting from the root part (head) to the leaf parts (hands and feet), sequentially. In pose estimation experiments on two benchmark datasets (PARSE and LSP), the proposed method achieved 1.5-4.0% improvement in the percentage of correct localized parts (PCP) over the state-of-the-art methods. [ABSTRACT FROM AUTHOR]
ISSN:10709908
DOI:10.1109/LSP.2014.2362553