Bibliographic Details
| Title: |
A new open source data analysis python script for QSAR study and its validation. |
| Authors: |
Kurdekar, Vadiraj, Jadhav, Hemant |
| Source: |
Medicinal Chemistry Research; Apr2015, Vol. 24 Issue 4, p1617-1625, 9p |
| Abstract: |
Quantitative structure-activity relationship (QSAR) is the statistical correlation of physicochemical properties of the structure with biological activity. QSAR study involves two main steps: first is the generation of descriptors, and second is building and validating the models. We have developed a python script that effectively uses descriptor and activity data in building and validating best QSAR model. Although available software provides descriptor calculation, lack of either the components needed for cross-validation or proper workflow for QSAR analysis is the bottleneck. In this paper we report, the validation results of this software using data available for MMP 13 inhibitors and anti-malarial compounds. We have found that the values obtained using this script correlate well with that calculated from Microsoft excel and reported QSAR models. [ABSTRACT FROM AUTHOR] |
|
Copyright of Medicinal Chemistry Research is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |