A tidal disruption event from an intermediate-mass black hole revealed by comprehensive multi-wavelength observations.
Uloženo v:
| Název: | A tidal disruption event from an intermediate-mass black hole revealed by comprehensive multi-wavelength observations. |
|---|---|
| Autoři: | Wang J; Department of Astronomy, University of Science and Technology of China, Hefei, China. jialaiwang@mail.ustc.edu.cn.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China. jialaiwang@mail.ustc.edu.cn., Huang M; Department of Astronomy, University of Science and Technology of China, Hefei, China.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China., Xue Y; Department of Astronomy, University of Science and Technology of China, Hefei, China. xuey@ustc.edu.cn.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China. xuey@ustc.edu.cn., Jiang N; Department of Astronomy, University of Science and Technology of China, Hefei, China. jnac@ustc.edu.cn.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China. jnac@ustc.edu.cn., Huang S; Department of Astronomy, University of Science and Technology of China, Hefei, China.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China., Wang Y; Department of Astronomy, University of Science and Technology of China, Hefei, China.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China., Zhu J; Department of Astronomy, University of Science and Technology of China, Hefei, China.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China., Zhu S; Department of Astronomy, University of Science and Technology of China, Hefei, China.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China., Dai L; Department of Physics, The University of Hong Kong, Hong Kong, China., Jin C; National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China.; School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing, China.; Institute for Frontier in Astronomy and Astrophysics, Beijing Normal University, Beijing, China., Luo B; School of Astronomy and Space Science, Nanjing University, Nanjing, China.; Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing, China., Shu X; Department of Physics, Anhui Normal University, Wuhu, Anhui, China., Sun M; Department of Astronomy, Xiamen University, Xiamen, Fujian, China., Wang T; Department of Astronomy, University of Science and Technology of China, Hefei, China.; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China., Zou F; Department of Astronomy, University of Michigan, Ann Arbor, MI, USA. |
| Zdroj: | Nature communications [Nat Commun] 2026 Jan 24. Date of Electronic Publication: 2026 Jan 24. |
| Publication Model: | Ahead of Print |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: [London] : Nature Pub. Group |
| Abstrakt: | Tidal disruption events (TDEs) occur when a star crosses the tidal radius of a black hole (BH) and is ripped apart, providing a powerful way to probe dormant BHs over a wide mass range. In this study, we present our late-time observations and comprehensive multi-wavelength analyses of AT 2018cqh, a TDE at the center of a dwarf galaxy that exhibited successive flares in the optical, X-ray, and radio bands. We discovered an unexpected high-state X-ray plateau phase following the peak until the present time. Along with its reported prolonged rise lasting at least 550 days, these unique characteristics are consistent with the scenario of a TDE caused by an intermediate-mass black hole (IMBH) with a mass of approximately (1 - 6) × 10 5 solar masses. Furthermore, scaling relations derived from the host-galaxy properties indicated a similar BH mass in concert. This discovery highlights the invaluable role of TDEs in the search for elusive IMBHs. (© 2026. The Author(s).) |
| Competing Interests: | Competing interests: The authors declare no competing interests. |
| References: | Greene, J. E., Strader, J. & Ho, L. C. Intermediate-Mass Black Holes. Ann. Rev. Astron. Astrophys. 58, 257–312 (2020). Reines, A. E. Hunting for massive black holes in dwarf galaxies. Nat. Astron. 6, 26–34 (2022). Rees, M. J. Tidal disruption of stars by black holes of 10 6 -10 8 solar masses in nearby galaxies. Nature 333, 523–528 (1988). Gezari, S. Tidal disruption events. Ann. Rev. Astron. Astrophys. 59, 21–58 (2021). Yao, Y. et al. Tidal disruption event demographics with the Zwicky transient facility: volumetric rates, luminosity function, and implications for the local black hole mass function. Astrophys. J. Lett. 955, L6 (2023). Angus, C. R. et al. A fast-rising tidal disruption event from a candidate intermediate-mass black hole. Nat. Astron. 6, 1452–1463 (2022). Roth, N. et al. Radiative emission mechanisms. Space Sci. Rev. 216, 114 (2020). Guillochon, J., Manukian, H. & Ramirez-Ruiz, E. PS1-10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014). Roth, N., Kasen, D., Guillochon, J. & Ramirez-Ruiz, E. The X-ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827, 3 (2016). Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion-what powers tidal disruption events? Astrophys. J. 806, 164 (2015). Saxton, R., Komossa, S., Auchettl, K. & Jonker, P. G. X-ray properties of TDEs. Space Sci. Rev. 216, 85 (2020). Lin, D. et al. An ultrasoft X-ray flare from 3XMM J152130.7+074916: a tidal disruption event candidate. Astrophys. J. 811, 43 (2015). Lin, D. et al. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2, 656–661 (2018). He, J. S. et al. Long-term X-ray evolution of SDSS J134244.4+053056.1. A more than 18 year-old, long-lived IMBH-TDE candidate. Astron. Astrophys. 652, A15 (2021). Jin, C. C. et al. An intermediate-mass black hole lurking in a galactic halo caught alive during outburst. arXiv e-prints arXiv:2501.09580 (2025). Yuan, W. et al. Science objectives of the Einstein Probe mission. Sci. China Phys. Mech. Astron. 68, 239501 (2025). Predehl, P. et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 647, A1 (2021). Sunyaev, R. et al. SRG X-ray orbital observatory. Its telescopes and first scientific results. Astron. Astrophys. 656, A132 (2021). Delgado, A. et al. GaiaAlerts transient discovery report for 2018-06-17. Transient Name Serv. Discov. Rep. 2018-839, 1 (2018). Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018). Bykov, S. D., Gilfanov, M. R. & Sunyaev, R. A. SRG/eROSITA catalogue of X-ray active SDSS dwarf galaxies. Mon. Not. Roy. Astron. Soc. 527, 1962–1981 (2024). Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005). Zhang, F. et al. Delayed and fast-rising radio flares from an optical and X-ray-detected tidal disruption event in the center of a dwarf galaxy. Astrophys. J. Lett. 962, L18 (2024). Trakhtenbrot, B. et al. A new class of flares from accreting supermassive black holes. Nat. Astron. 3, 242–250 (2019). Trakhtenbrot, B. et al. 1ES 1927+654: an AGN caught changing look on a timescale of months. Astrophys. J. 883, 94 (2019). Guolo, M. et al. A systematic analysis of the X-ray emission in optically selected tidal disruption events: observational evidence for the unification of the optically and X-ray-selected populations. Astrophys. J. 966, 160 (2024). Mummery, A. et al. Fundamental scaling relationships revealed in the optical light curves of tidal disruption events. Mon. Not. Roy. Astron. Soc. 527, 2452–2489 (2024). Jonker, P. G., Stone, N. C., Generozov, A., van Velzen, S. & Metzger, B. Implications from late-time X-ray detections of optically selected tidal disruption events: state changes, unification, and detection rates. Astrophys. J. 889, 166 (2020). Lin, D. et al. A likely decade-long sustained tidal disruption event. Nat. Astron. 1, 0033 (2017). Lin, D. et al. Follow-up observations of the prolonged, super-eddington, tidal disruption event candidate 3XMM J150052.0+015452: the slow decline continues. Astrophys. J. Lett. 924, L35 (2022). Cao, Z., Jonker, P. G., Wen, S., Stone, N. C. & Zabludoff, A. I. The rapidly spinning intermediate-mass black hole 3XMM J150052.0+015452. Mon. Not. Roy. Astron. Soc. 519, 2375–2390 (2023). van Velzen, S. et al. Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. Astrophys. J. 878, 82 (2019). Wang, J.-M. & Zhou, Y.-Y. Self-similar solution of optically thick advection-dominated flows. Astrophys. J. 516, 420–424 (1999). Watarai, K. -y, Fukue, J., Takeuchi, M. & Mineshige, S. Galactic black-hole candidates shining at the Eddington luminosity. Publ. Astron. Soc. Jpn 52, 133 (2000). Mineshige, S., Kawaguchi, T., Takeuchi, M. & Hayashida, K. Slim-disk model for soft X-ray excess and variability of narrow-line Seyfert 1 galaxies. Publ. Astron. Soc. Jpn 52, 499–508 (2000). Ulmer, A. Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999). Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973). Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Slim Accretion Disks. Astrophys. J. 332, 646 (1988). Krolik, J. H. & Piran, T. Jets from tidal disruptions of stars by black holes. Astrophys. J. 749, 92 (2012). Wang, J.-M., Du, P., Valls-Gabaud, D., Hu, C. & Netzer, H. Super-Eddington accreting massive black holes as long-lived cosmological standards. Phys. Rev. Lett. 110, 081301 (2013). Du, P. et al. Supermassive black holes with high accretion rates in active galactic nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion. Astrophys. J. 806, 22 (2015). Li, W. et al. Inefficient Circularization, Delayed Stream-Disk Interaction and Reprocessing: A Five-Stage Model for the Intermediate-Mass Black Hole Tidal Disruption Event EP240222a. arXiv e-prints arXiv:2512.02147 (2025). 2512.02147. Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015). Bonnerot, C., Rossi, E. M., Lodato, G. & Price, D. J. Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes. Mon. Not. Roy. Astron. Soc. 455, 2253–2266 (2016). Dai, L., McKinney, J. C. & Miller, M. C. Soft X-ray temperature tidal disruption events from stars on deep plunging orbits. Astrophys. J. Lett. 812, L39 (2015). Wong, T. H. T., Pfister, H. & Dai, L. Revisiting the rates and demographics of tidal disruption events: effects of the disk formation efficiency. Astrophys. J. Lett. 927, L19 (2022). Mummery, A. Tidal disruption event discs are larger than they seem: removing systematic biases in TDE X-ray spectral modelling. Mon. Not. Roy. Astron. Soc. 507, L24–L28 (2021). Koratkar, A. & Blaes, O. The ultraviolet and optical continuum emission in active galactic nuclei: the status of accretion disks. Publ. Astron. Soc. Pac. 111, 1–30 (1999). Davis, S. W., Blaes, O. M., Hubeny, I. & Turner, N. J. Relativistic accretion disk models of high-state black hole X-ray binary spectra. Astrophys. J. 621, 372–387 (2005). Novikov, I. D. & Thorne, K. S. Astrophysics of black holes. In Dewitt, C. & Dewitt, B. S. (eds.) Black Holes (Les Astres Occlus), 343–450 (1973). Done, C., Davis, S. W., Jin, C., Blaes, O. & Ward, M. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei. Mon. Not. Roy. Astron. Soc. 420, 1848–1860 (2012). Wen, S., Jonker, P. G., Stone, N. C., Zabludoff, A. I. & Cao, Z. A library of synthetic X-ray spectra for fitting tidal disruption events. Astrophys. J. 933, 31 (2022). Hodgkin, S. T. et al. Gaia Early Data Release 3. Gaia photometric science alerts. Astron. Astrophys. 652, A76 (2021). Brandt, W. N., Pounds, K. A. & Fink, H. The unusual X-ray and optical properties of the ultrasoft active galactic nucleus Zwicky 159.034 (RE J1237+264). Mon. Not. Roy. Astron. Soc. 273, L47–L52 (1995). Wang, T.-G. et al. Extreme coronal line emitters: tidal disruption of stars by massive black holes in galactic nuclei? Astrophys. J. 749, 115 (2012). Hinkle, J. T., Shappee, B. J. & Holoien, T. W. S. Coronal line emitters are tidal disruption events in gas-rich environments. Mon. Not. Roy. Astron. Soc. 528, 4775–4784 (2024). van Velzen, S., Pasham, D. R., Komossa, S., Yan, L. & Kara, E. A. Reverberation in tidal disruption events: dust echoes, coronal emission lines, multi-wavelength cross-correlations, and QPOs. Space Sci. Rev. 217, 63 (2021). Yang, L. et al. Outflow–cloud interaction as the possible origin of the peculiar radio emission in the tidal disruption event AT2018cqh. Astrophys. J. Lett. 993, L2 (2025). Schawinski, K. et al. The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies. Mon. Not. Roy. Astron. Soc. 440, 889–907 (2014). Hammerstein, E. et al. Tidal disruption event hosts are green and centrally concentrated: signatures of a post-merger system. Astrophys. J. Lett. 908, L20 (2021). French, K. D., Arcavi, I. & Zabludoff, A. Tidal disruption events prefer unusual host galaxies. Astrophys. J. Lett. 818, L21 (2016). French, K. D., Wevers, T., Law-Smith, J., Graur, O. & Zabludoff, A. I. The host galaxies of tidal disruption events. Space Sci. Rev. 216, 32 (2020). Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981). Ilbert, O. et al. Galaxy stellar mass assembly between 0.2 < z < 2 from the S-COSMOS survey. Astrophys. J. 709, 644–663 (2010). Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004). NASA High Energy Astrophysics Science Archive Research Center (HEASARC). HEAsoft: Unified Release of FTOOLS and XANADU. Astrophysics Source Code Library, record ascl:1408.004 (2014). Chen, Y. et al. Status of the follow-up X-ray telescope onboard the Einstein Probe satellite. In den Herder, J.-W. A., Nikzad, S. & Nakazawa, K. (eds.) Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, vol. 11444 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 114445B (2020). Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001). Gabriel, C. et al. The XMM-Newton SAS - Distributed Development and Maintenance of a Large Science Analysis System: A Critical Analysis. In Ochsenbein, F., Allen, M. G. & Egret, D. (eds.) Astronomical Data Analysis Software and Systems (ADASS) XIII, vol. 314 of Astronomical Society of the Pacific Conference Series, 759 (2004). Arnaud, K. A. XSPEC: The First Ten Years. In Jacoby, G. H. & Barnes, J. (eds.) Astronomical Data Analysis Software and Systems V, vol. 101 of Astronomical Society of the Pacific Conference Series, 17 (1996). Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016). Bellm, E. C. et al. The Zwicky transient facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019). Masci, F. J. et al. The Zwicky transient facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019). York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000). Abdurro’uf et al. The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophys. J., Suppl. Ser. 259, 35 (2022). DESI Collaboration et al. Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument. Astron. J. 164, 207 (2022). DESI Collaboration et al. The early data release of the Dark Energy Spectroscopic Instrument. Astron. J. 168, 58 (2024). Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the hale telescope. Publ. Astron. Soc. Pac. 94, 586 (1982). Fitzpatrick, E. L. Correcting for the Effects of Interstellar Extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999). Schlafly, E. F. & Finkbeiner, D. P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 737, 103 (2011). Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pac. 116, 138–147 (2004). Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. Roy. Astron. Soc. 351, 1151–1179 (2004). Hotan, A. W. et al. Australian square kilometre array pathfinder: I. system description. Publ. Astron. Soc. Aust. 38, e009 (2021). McConnell, D. et al. The Rapid ASKAP Continuum Survey I: Design and first results. Publ. Astron. Soc. Aust. 37, e048 (2020). Murphy, T. et al. The ASKAP variables and slow transients (VAST) pilot survey. Publ. Astron. Soc. Aust. 38, e054 (2021). Norris, R. P. et al. The Evolutionary Map of the Universe pilot survey. Publ. Astron. Soc. Aust. 38, e046 (2021). Allison, J. R. et al. The First Large Absorption Survey in H I (FLASH): I. Science goals and survey design. Publ. Astron. Soc. Aust. 39, e010 (2022). Lacy, M. et al. The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publ. Astron. Soc. Pac. 132, 035001 (2020). CASA Team et al. CASA, the common astronomy software applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022). Martin, D. C. et al. The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission. Astrophys. J. Lett. 619, L1–L6 (2005). Chambers, K. C. et al. The Pan-STARRS1 Surveys. arXiv e-prints arXiv:1612.05560 (2016). Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. Roy. Astron. Soc. 379, 1599–1617 (2007). Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 140, 1868–1881 (2010). Boquien, M. et al. CIGALE: a Python Code Investigating GALaxy Emission. Astron. Astrophys. 622, A103 (2019). Yang, G. et al. X-CIGALE: Fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. Roy. Astron. Soc. 491, 740–757 (2020). Yang, G. et al. Fitting AGN/Galaxy X-Ray-to-radio SEDs with CIGALE and Improvement of the Code. Astrophys. J. 927, 192 (2022). Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. Roy. Astron. Soc. 344, 1000–1028 (2003). Chabrier, G. The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations. Astrophys. J. Lett. 586, L133–L136 (2003). Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mexicana de. Astron.ía y. Astro.íSci. 53, 385–438 (2017). Villa-Vélez, J. A., Buat, V., Theulé, P., Boquien, M. & Burgarella, D. Fitting spectral energy distributions of FMOS-COSMOS emission-line galaxies at z ~ 1.6: Star formation rates, dust attenuation, and [OIII]λ5007 emission-line luminosities. Astron. Astrophys. 654, A153 (2021). Calzetti, D. et al. The Dust Content and Opacity of Actively Star-forming Galaxies. Astrophys. J. 533, 682–695 (2000). Dale, D. A. et al. A Two-parameter Model for the Infrared/Submillimeter/Radio Spectral Energy Distributions of Galaxies and Active Galactic Nuclei. Astrophys. J. 784, 83 (2014). |
| Grant Information: | 12393814 National Natural Science Foundation of China (National Science Foundation of China); 12025303 National Natural Science Foundation of China (National Science Foundation of China); XDB0550300 Chinese Academy of Sciences (CAS); 2023YFA1608100 Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) |
| Entry Date(s): | Date Created: 20260124 Latest Revision: 20260124 |
| Update Code: | 20260125 |
| DOI: | 10.1038/s41467-026-68670-3 |
| PMID: | 41580404 |
| Databáze: | MEDLINE |
| Abstrakt: | Tidal disruption events (TDEs) occur when a star crosses the tidal radius of a black hole (BH) and is ripped apart, providing a powerful way to probe dormant BHs over a wide mass range. In this study, we present our late-time observations and comprehensive multi-wavelength analyses of AT 2018cqh, a TDE at the center of a dwarf galaxy that exhibited successive flares in the optical, X-ray, and radio bands. We discovered an unexpected high-state X-ray plateau phase following the peak until the present time. Along with its reported prolonged rise lasting at least 550 days, these unique characteristics are consistent with the scenario of a TDE caused by an intermediate-mass black hole (IMBH) with a mass of approximately (1 - 6) × 10 <sup>5</sup> solar masses. Furthermore, scaling relations derived from the host-galaxy properties indicated a similar BH mass in concert. This discovery highlights the invaluable role of TDEs in the search for elusive IMBHs.<br /> (© 2026. The Author(s).) |
|---|---|
| ISSN: | 2041-1723 |
| DOI: | 10.1038/s41467-026-68670-3 |
Full Text Finder
Nájsť tento článok vo Web of Science