Impact of nanoparticles on biogeochemical processes in soil-plant system under heavy metals stress; exploring remediation mechanism and plant health status.

Uloženo v:
Podrobná bibliografie
Název: Impact of nanoparticles on biogeochemical processes in soil-plant system under heavy metals stress; exploring remediation mechanism and plant health status.
Autoři: Hussain B; School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China. babar.ses@gmail.com., Javed K; Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, China., Ali M; State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China., Ullah S; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People's Republic of China., Sun S; School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China. shysun@swust.edu.cn., Idris AM; Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia.; Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia., Singh S; Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India.; Division of Research and development, Lovely Professional University, Phagwara, Punjab, India.
Zdroj: Environmental geochemistry and health [Environ Geochem Health] 2025 Dec 06; Vol. 48 (1), pp. 31. Date of Electronic Publication: 2025 Dec 06.
Způsob vydávání: Journal Article; Review
Jazyk: English
Informace o časopise: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
Imprint Name(s): Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
Výrazy ze slovníku MeSH: Metals, Heavy*/toxicity , Metals, Heavy*/metabolism , Soil Pollutants*/toxicity , Soil Pollutants*/metabolism , Soil Pollutants*/chemistry , Plants*/drug effects , Plants*/metabolism , Environmental Restoration and Remediation* , Metal Nanoparticles*/chemistry , Metal Nanoparticles*/toxicity, Soil/chemistry ; Biodegradation, Environmental ; Stress, Physiological
Abstrakt: Although, NPs have potential to improved plant resistance against abiotic stress, increased nutrient usage efficiency, and sustenance of agricultural production. However, reactions of NPs in soil matrices, particularly their movement, perseverance, and biogeochemical reactions in soil-plant system under heavy metals (HMs) were not well understood. Therefore, this review presents the latest research in order to clarify the molecular interactions, beneficial transformations, and detoxification processes of NPs in plants and evaluates their roles in these processes. It further aims to quantify the benefits and risks, and give future directions for NPs design and applications in environmental remediation and agriculture. NPs significantly enhanced agricultural outcomes through mechanisms such as regulating HMs uptake, boosting antioxidant enzyme activity (up to a 60% increase), altering soil properties, and optimizing physiological metabolism. NPs amendments raised crop output by 20-55% while reducing disease and nutrient leaching to 50% and 30%, respectively, and improving the soil's carbon sink by 15%. Meanwhile, green-synthesized nanomaterials offer eco-friendly alternatives in remediation through processes like adsorption, oxidation, coprecipitation, ion-exchange, photocatalysis, and nanophytoremediation, achieving 100% pollutant removal efficiency for elements like hexavalent chromium using iron NPs. However, challenges such as NPs accumulation in food chains, potential toxicity to non-target species, and physiological disruptions necessitate solutions like microbiome co-delivery and stimuli-responsive systems to balance safety and effectiveness. In order to increase the available resources and address the worldwide food safety issue, the use of NPs in agroecosystems might be a crucial step towards sustainable farming. Therefore, the influence of NPs on soil, and plant antioxidant defense systems and oxidative stress activation under HMs should be studied using molecular, physiological, and biochemical techniques. For this purpose, real-time polymerase chain reaction (RT-PCR) analysis, illumina MiSeq sequencing, pyrosequencing analysis, metagenomics, metabolomics, proteomics, and functional assays etc. could be most useful for NPs risk/benefit evaluation.
(© 2025. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Abdelghany, A. M., El-Banna, A. A. A., Salama, E. A. A., Ali, M. M., Al-Huqail, A. A., Ali, H. M., Paszt, L. S., El-Sorady, G. A., & Lamlom, S. F. (2022). The individual and combined effect of nanoparticles and biofertilizers on growth, yield, and biochemical attributes of peanuts (Arachis hypogea L.). Agronomy, 12, 398. https://doi.org/10.3390/agronomy12020398. (PMID: 10.3390/agronomy12020398)
Abdulkhair, B. Y., & Elamin, M. R. (2022). Low-cost carbon nanoparticles for removing hazardous organic pollutants from water: Complete remediation study and multi-use investigation. Inorganics, 10(9), 136. https://doi.org/10.3390/inorganics10090136. (PMID: 10.3390/inorganics10090136)
Aborisade, M. A., Feng, A., Oba, B. T., Kumar, A., Battamo, A. Y., Huang, M., Chen, D., Yang, Y., Sun, P., & Zhao, L. (2022a). Pyrolytic synthesis and performance efficacy comparison of biochar-supported nanoscale zero-valent iron on soil polluted with toxic metals. Archives of Agronomy and Soil Science, 69(12), 2249–2266. https://doi.org/10.1080/03650340.2022.2146100. (PMID: 10.1080/03650340.2022.2146100)
Aborisade, M. A., Feng, A., Zheng, X., Oba, B. T., Kumar, A., Battamo, A. Y., Kavwenje, S., Liu, J., Chen, D., Okimiji, O. P., Ojekunle, O. Z., Yang, Y., Sun, P., & Zhao, L. (2022b). Carbothermal reduction synthesis of eggshell-biochar modified with nanoscale zerovalent iron/activated carbon for remediation of soil polluted with lead and cadmium. Environmental Nanotechnology, Monitoring & Management, 18, 100726. https://doi.org/10.1016/j.enmm.2022.100726. (PMID: 10.1016/j.enmm.2022.100726)
Aborisade, M. A., Geng, H., Oba, B. T., Kumar, A., Ndudi, E. A., Battamo, A. Y., Liu, J., Chen, D., Okimiji, O. P., Ojekunle, O. Z., Yang, Y., Sun, P., & Zhao, L. (2023a). Remediation of soil polluted with Pb and Cd and alleviation of oxidative stress in Brassica rapa plant using nanoscale zerovalent iron supported with coconut-husk biochar. Journal of Plant Physiology, 287, 154023. https://doi.org/10.1016/j.jplph.2023.154023. (PMID: 10.1016/j.jplph.2023.154023)
Aborisade, M. A., Oba, B. T., Kumar, A., Liu, J., Chen, D., Okimiji, P., & Zhao, L. (2023b). Remediation of metal toxicity and alleviation of toxic metals-induced oxidative stress in Brassica chinensis L using biochar-iron nanocomposites. Plant and Soil, 493, 629–645. https://doi.org/10.1007/s11104-023-06256-4. (PMID: 10.1007/s11104-023-06256-4)
Achari, G. A., & Kowshik, M. (2018). Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. Journal of Agricultural and Food Chemistry, 66, 8647–8661. https://doi.org/10.1021/acs.jafc.8b00691. (PMID: 10.1021/acs.jafc.8b00691)
Adamczyk, Z., & Weroński, P. (1999). Application of the DLVO theory for particle deposition problems. Advances in Colloid and Interface Science, 83, 137–226. https://doi.org/10.1016/S0001-8686(99)00009-3. (PMID: 10.1016/S0001-8686(99)00009-3)
Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148–8162. https://doi.org/10.1007/s11356-015-4496-5. (PMID: 10.1007/s11356-015-4496-5)
Adrees, M., Khan, Z. S., Hafeez, M., Rizwan, M., Hussain, K., Asrar, M., Alyemeni, M. N., Wijaya, L., & Ali, S. (2021). Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environmental Safety, 208, 111627. https://doi.org/10.1016/j.ecoenv.2020.111627. (PMID: 10.1016/j.ecoenv.2020.111627)
Ahmed, B., Rizvi, A., Ali, K., Lee, J., Zaidi, A., Khan, S. K., & Musarrat, J. (2021). Nanoparticles in the soil–plant system: A review. Environmental Chemistry Letters, 19, 1545–1609. https://doi.org/10.1007/s10311-020-01138-y. (PMID: 10.1007/s10311-020-01138-y)
Ahmed, T., Shou, L., Guo, J., Noman, M., Qi, Y., Yao, Y., Masood, H. A., Rizwan, M., Ali, Md. A., Ali, H. M., Li, B., & Qi, X. (2024). Modulation of rhizosphere microbial community and metabolites by bio-functionalized nanoscale silicon oxide alleviates cadmium-induced phytotoxicity in bayberry plants. Science of the Total Environment, 933, 173068. https://doi.org/10.1016/j.scitotenv.2024.173068. (PMID: 10.1016/j.scitotenv.2024.173068)
Al Salama, Y., Alghoraibi, I., Zein, R., & Alsouse, M. (2025). Silver nanoparticles seed priming for sustainable enhancement of durum wheat growth, yield, and nutrient enrichment. IET Nanobiotechnology, 2025(1), 6152486. https://doi.org/10.1049/nbt2/6152486. (PMID: 10.1049/nbt2/6152486)
Alharby, H. F., Rizwan, M., Iftikhar, A., Hussaini, K. M., Zia ur Rehman, M., Bamagoos, A. A., Alharbi, B. M., Asrar, M., Yasmeen, T., & Ali, S. (2021). Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety, 221, 112436. https://doi.org/10.1016/j.ecoenv.2021.112436. (PMID: 10.1016/j.ecoenv.2021.112436)
Ali, S., Mehmood, A., & Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021, 6677616. https://doi.org/10.1155/2021/6677616. (PMID: 10.1155/2021/6677616)
Alizadeh, M., Qarachal, J. F., & Sheidaee, E. (2025). Understanding the ecological impacts of nanoparticles: Risks, monitoring, and mitigation strategies. Nanotechnology for Environmental Engineering, 10, 6. https://doi.org/10.1007/s41204-024-00403-7. (PMID: 10.1007/s41204-024-00403-7)
Alloway BJ (2008) Zinc in soils and crop nutrition. published by IZA and IFA. Brussels, Belgium and Paris, France 139. http://www.topsoils.co.nz/wp-content/uploads/2014/09/Zinc-in-Soils-and-Crop-Nutrition-Brian-J.-Alloway.pdf .
Alperovitch, N., Shainberg, I., & Keren, R. (1981). Specific effect of magnesium on the hydraulic conductivity of sodic soils. Journal of Soil Science, 32, 543–554. https://doi.org/10.1111/j.1365-2389.1981.tb01728.x. (PMID: 10.1111/j.1365-2389.1981.tb01728.x)
Alshehri, K., Gao, Z., Harbottle, M., Sapsford, D., & Cleall, P. (2023). Life cycle assessment and cost-benefit analysis of nature-based solutions for contaminated land remediation: A mini-review. Heliyon, 9(10), e20632. https://doi.org/10.1016/j.heliyon.2023.e20632. (PMID: 10.1016/j.heliyon.2023.e20632)
Anderson, A. J., McLean, J. E., Jacobson, A. R., & Britt, D. W. (2018). CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. Journal of Agricultural and Food Chemistry, 66, 6513–6524. https://doi.org/10.1021/acs.jafc.7b01302. (PMID: 10.1021/acs.jafc.7b01302)
Anjum, N. A., Gill, S. S., Duarte, A. C., Pereira, E., & Ahmad, I. (2013). Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research, 15, 1896. https://doi.org/10.1007/s11051-013-1896-7. (PMID: 10.1007/s11051-013-1896-7)
Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66, 303–310. https://doi.org/10.1007/s10725-011-9649-z. (PMID: 10.1007/s10725-011-9649-z)
Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: Role of nanoparticle size and surface coating. Environmental Science: Nano, 4, 907–918. https://doi.org/10.1039/C6EN00567E. (PMID: 10.1039/C6EN00567E)
Asghar, N., Hussain, A., Nguyen, D. A., Ali, S., Hussain, I., Junejo, A., & Ali, A. (2024). Advancement in nanomaterials for environmental pollutants remediation: A systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. Journal of Nanobiotechnology, 22, 26. https://doi.org/10.1186/s12951-023-02151-3. (PMID: 10.1186/s12951-023-02151-3)
Asli, S., & Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32(5), 577–584. https://doi.org/10.1111/j.1365-3040.2009.01952.x. (PMID: 10.1111/j.1365-3040.2009.01952.x)
Avellan, A., Schwab, F., Masion, A., Chaurand, P., Borschneck, D., Vidal, V., Rose, J. R. M., Santaella, C., & Levard, C. M. (2017). Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science & Technology, 51, 8682–8691. https://doi.org/10.1021/acs.est.7b01133. (PMID: 10.1021/acs.est.7b01133)
Avellan, A., Yun, J., Morais, B. P., Clement, E. T., Rodrigues, S. M., & Lowry, G. V. (2021). Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environmental Science & Technology, 55, 13417–13431. https://doi.org/10.1021/acs.est.1c00178. (PMID: 10.1021/acs.est.1c00178)
Awet, T. T., Kohl, Y., Meier, F., et al. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30, 2018. https://doi.org/10.1186/s12302-018-0140-6. (PMID: 10.1186/s12302-018-0140-6)
Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K., & Lead, J. R. (2008). Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environmental Toxicology and Chemistry, 27(9), 1875–1882. https://doi.org/10.1897/07-559.1. (PMID: 10.1897/07-559.1)
Bakht, B. K., Iftikhar, M., Gul, I., Ali, M. A., Shah, G. M., & Arshad, M. (2021). Effect of nanoparticles on crop growth. In Nanomaterials for soil remediation (pp. 183–201). Elsevier.
Bano, N., Khan, S., Hamid, Y., Bano, F., Khan, A. G., Ullah, M. A., Li, T., Ullah, H., Bolan, N., Rinklebe, J., & Shaheen, S. M. (2024). Seed nano-priming with multiple nanoparticles enhanced the growth parameters of lettuce and mitigated cadmium (Cd) bio-toxicity: An advanced technique for remediation of Cd contaminated environments. Environmental Pollution, 344, 123300. https://doi.org/10.1016/j.envpol.2024.123300. (PMID: 10.1016/j.envpol.2024.123300)
Baragaño, D., Suárez, I., Forján, R., Gallego, J. R., & González, A. (2025). Field-scale evaluation of nanoscale zero-valent iron and biochar coupled with phytoremediation for in situ stabilization of polluted soil. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2025.117607. (PMID: 10.1016/j.jece.2025.117607)
Baron-Epel, O., Gharyal, P. K., & Schindler, M. (1988). Pectins as mediators of wall porosity in soybean cells. Planta, 175, 389–395. https://doi.org/10.1007/BF00396345. (PMID: 10.1007/BF00396345)
Bayat, H., Kolahchi, Z., Valaey, S., Rastgou, M., & Mahdavi, S. (2018). Novel impacts of nanoparticles on soil properties: Tensile strength of aggregates and compression characteristics of soil. Archives of Agronomy and Soil Science, 64, 776–789. https://doi.org/10.1080/03650340.2017.1393527. (PMID: 10.1080/03650340.2017.1393527)
Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90, 640–646. https://doi.org/10.1016/j.chemosphere.2012.09.018. (PMID: 10.1016/j.chemosphere.2012.09.018)
Bhardwaj, M., Prakash, N., & Mahlotra, R. K. (2025). Green nanotechnology innovations for achieving india’s sustainable development goals by 2030. Sustainable economy models in the age of industry 5.0 (pp. 179–197). Springer Nature Singapore: Singapore. (PMID: 10.1007/978-981-96-4104-8_11)
Bhat, J. A., Faizan, M., Bhat, M. A., Huang, F., Yu, D., Ahmad, A., Bajguz, A., & Ahmad, P. (2022). Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere, 288, 132471. https://doi.org/10.1016/j.chemosphere.2021.132471. (PMID: 10.1016/j.chemosphere.2021.132471)
Bhattacharjya, S., Adhikari, T., Sahu, A., et al. (2021). Ecotoxicological effect of TiO 2 nano particles on different soil enzymes and microbial community. Ecotoxicology, 30, 719–732. https://doi.org/10.1007/s10646-021-02398-2. (PMID: 10.1007/s10646-021-02398-2)
Bjerk, T. R., Severino, P., Jain, S., Marques, C., Silva, A. M., Pashirova, T., & Souto, E. B. (2021). Biosurfactants: Properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering, 8, 115. https://doi.org/10.3390/bioengineering8080115. (PMID: 10.3390/bioengineering8080115)
Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87, 1181–1200. https://doi.org/10.1007/s00204-013-1079-4. (PMID: 10.1007/s00204-013-1079-4)
Borgatta, J., Ma, C., Hudson-Smith, N., Elmer, W., Pérez, C. D. P., Torre-Roche, R. D. L., Zuverza-Mena, N<, Haynes, C. L., White, J. C., & Hamers, R. J. (2018). Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): Role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6, 14847–14856. https://doi.org/10.1021/acssuschemeng.8b03379. (PMID: 10.1021/acssuschemeng.8b03379)
Cao, X., Chen, X., Liu, Y., Wang, C., Yue, L., Elmer, W. H., White, J. C., Wang, Z., & Xing, B. (2023). Lanthanum silicate nanomaterials enhance sheath blight resistance in rice: Mechanisms of action and soil health evaluation. ACS Nano, 17, 15821–15835. https://doi.org/10.1021/acsnano.3c03701. (PMID: 10.1021/acsnano.3c03701)
Cao, Z., Stowers, C., Rossi, L., Zhang, W., Lombardini, L., & Xingmao, M. (2017). Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano Journal, 4, 1086–1094. https://doi.org/10.1039/C7EN00015D. (PMID: 10.1039/C7EN00015D)
Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: Consistency of molecular-structure with the physical properties of the walls during growth. The Plant Journal, 3, 1–30. https://doi.org/10.1111/j.1365-313x.1993.tb00007.x. (PMID: 10.1111/j.1365-313x.1993.tb00007.x)
Carvalho, R. F., Piotto, F. A., Schmidt, D., Peters, L. P., Monteiro, C. C., & Azevedo, R. A. (2011). Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Scientia Agricola, 68, 598–602. https://doi.org/10.1590/S0103-90162011000500014. (PMID: 10.1590/S0103-90162011000500014)
Castiglione, M., Giorgetti, L., Cremonini, R., Bottega, S., & Spanò, C. (2014). Impact of TiO 2 nanoparticles on Vicia narbonensis L.: Potential toxicity effects. Protoplasma, 251, 1471–1479. https://doi.org/10.1007/s00709-014-0649-5. (PMID: 10.1007/s00709-014-0649-5)
Castillo, C., Jeon, S. J., Hoang, K. N. L., et al. (2025). In vivo transformations of positively charged nanoparticles alter the formation and function of RuBisCO photosynthetic protein corona. Nature Nanotechnology, 20, 1152–1162. https://doi.org/10.1038/s41565-025-01944-x. (PMID: 10.1038/s41565-025-01944-x)
Chatzipanagiotou, K. R., Petrakli, F., Steck, J., Philippot, C., Artous, S., & Koumoulos, E. P. (2025). Towards safe and sustainable by design nanomaterials: Risk and sustainability assessment on two nanomaterial case studies at early stages of development. Sustainable Futures, 9, 100511. https://doi.org/10.1016/j.sftr.2025.100511. (PMID: 10.1016/j.sftr.2025.100511)
Chen, Z., Young, T. E., Ling, J., Chang, S. C., & Gallie, D. R. (2003). Increasing vitamin C content of plants through enhanced ascorbate recycling. In: Proceedings of the National Academy of Sciences. (pp. 3525–3530). https://doi.org/10.1073/pnas.0635176100.
Chen, C., Zhou, Q., Guo, Z., et al. (2024). Lattice-sulfur-impregnated zero-valent iron crystals for long-term metal encapsulation. Nature Sustainability, 7(10), 1264–1272. https://doi.org/10.1038/s41893-024-01409-4. (PMID: 10.1038/s41893-024-01409-4)
Chen, X., Li, X., Xu, D., Yang, W., & Bai, S. (2020). Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil: A review. Nanotechnology Reviews, 9, 736–750. https://doi.org/10.1515/ntrev-2020-0059. (PMID: 10.1515/ntrev-2020-0059)
Chesson, A., Gardner, P. T., & Wood, T. J. (1997). Cell wall porosity and available surface area of wheat straw and wheat grain fractions. Journal of the Science of Food and Agriculture, 75, 289–295. https://doi.org/10.1002/(SICI)1097-0010(199711)75:3%3c289::AID-JSFA879%3e3.0.CO;2-R. (PMID: 10.1002/(SICI)1097-0010(199711)75:3<289::AID-JSFA879>3.0.CO;2-R)
Chichiriccò, G., & Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5, 851–873. https://doi.org/10.3390/nano5020851. (PMID: 10.3390/nano5020851)
Conway, J. R., & Keller, A. A. (2016). Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release. Water Research, 98, 250–260. https://doi.org/10.1016/j.watres.2016.04.021. (PMID: 10.1016/j.watres.2016.04.021)
Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., den Van Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44, 2720–2764. https://doi.org/10.1080/10643389.2013.829767. (PMID: 10.1080/10643389.2013.829767)
Covaliu-Mierlă, C. I., Păunescu, O., & Iovu, H. (2023). Recent advances in membranes used for nanofiltration to remove heavy metals from wastewater: A review. Membranes, 13(7), 643. https://doi.org/10.3390/membranes13070643. (PMID: 10.3390/membranes13070643)
Dai, Y., Zhao, J., Liu, X., Yu, X., Jiang, Z., Bu, Y., & Xing, B. (2019). Transformation and species identification of CuO nanoparticles in plant cells (Nicotiana tabacum). Environmental Science: Nano Journal, 6, 2724–2735. https://doi.org/10.1039/C9EN00781D. (PMID: 10.1039/C9EN00781D)
Das, D., Ingti, B., Paul, P., Jamatia, J. P., Ete, T., Khan, T., & Kalita, J. (2025). Soil microbial dynamics in response to the impact of nanoparticles on agricultural implications. Discover Soil, 2, 58. https://doi.org/10.1007/s44378-025-00087-8. (PMID: 10.1007/s44378-025-00087-8)
Dawes, C., Chan, M., Chinn, R., Koch, E., Lazar, A., & Tomasko, D. J. A. B. (1987). Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmannii from Florida. Aquatic Botany, 27(2), 195–201. https://doi.org/10.1016/0304-3770(87)90067-2. (PMID: 10.1016/0304-3770(87)90067-2)
De Angelis, G., Badiali, C., Chronopoulou, L., Palocci, C., & Pasqua, G. (2023). Confocal microscopy investigations of biopolymeric PLGA nanoparticle uptake in Arabidopsis thaliana L. cultured cells and plantlet roots. Plants, 12, Article 2397. https://doi.org/10.3390/plants1213239. (PMID: 10.3390/plants1213239)
De Souza, A., Govea-Alcaide, E., Masunaga, S. H., Fajardo-Rosabal, L., Effenberger, F., Rossi, L. M., & Jardim, R. D. F. (2019). Impact of Fe 3 O 4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 1(4), 308. https://doi.org/10.1007/s42452-019-0321-y. (PMID: 10.1007/s42452-019-0321-y)
Dehkourdi, E. H., & Mosavi, M. (2013). Effect of anatase nanoparticles (TiO 2 ) on parsley seed germination (Petroselinum crispum) in vitro. Biological Trace Element Research, 155, 283–286. https://doi.org/10.1007/s12011-013-9788-3. (PMID: 10.1007/s12011-013-9788-3)
Demirer, G. S., Zhang, H., Goh, N. S., Pinals, R. L., Chang, R., & Landry, M. P. (2020). Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Science Advances, 6, eaaz0495. https://doi.org/10.1126/sciadv.aaz0495. (PMID: 10.1126/sciadv.aaz0495)
Demirer, G. S., Zhang, H., Matos, J. L., Goh, N. S., Cunningham, F. J., Sung, Y., Chang, R., Aditham, A. J., Chio, L., Cho, M. J., Staskawicz, B., & Landry, M. P. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 14, 456–464. https://doi.org/10.1038/s41565-019-0382-5. (PMID: 10.1038/s41565-019-0382-5)
Dhanapal, A. R., Thiruvengadam, M., Vairavanathan, J., Venkidasamy, B., Easwaran, M., & Ghorbanpour, M. (2024). Nanotechnology approaches for the remediation of agricultural polluted soils. ACS Omega, 9(12), 13522–13533. https://doi.org/10.1021/acsomega.3c09776. (PMID: 10.1021/acsomega.3c09776)
Ditta, A., & Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnology Reviews, 5, 209–229. https://doi.org/10.1515/ntrev-2015-0060. (PMID: 10.1515/ntrev-2015-0060)
do Espirito Santo Pereira, A., Caixeta Oliveira, H., Fernandes Fraceto, L., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267. https://doi.org/10.3390/nano11020267. (PMID: 10.3390/nano11020267)
Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822–828. https://doi.org/10.1039/C0EM00611D. (PMID: 10.1039/C0EM00611D)
Du, W., Yang, J., Peng, Q., Liang, X., & Mao, H. (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227, 109–116. https://doi.org/10.1016/j.chemosphere.2019.03.168. (PMID: 10.1016/j.chemosphere.2019.03.168)
Durgadevi, P., Girigoswami, K., & Girigoswami, A. (2025). Biodegradable nanomaterials in boosting seed vigor and germination: Seed coating towards sustainability. Discover Applied Sciences, 7, 695. https://doi.org/10.1007/s42452-025-06737-4. (PMID: 10.1007/s42452-025-06737-4)
Durgadevi, P., Girigoswami, K., Harini, K., et al. (2024). Silent threats of organophosphates: Surging pollutants, harmful impacts, remediation strategies, and viable eco-friendly alternatives. Toxicology and Environmental Health Sciences, 17, 23–49. https://doi.org/10.1007/s13530-024-00241-9. (PMID: 10.1007/s13530-024-00241-9)
Dwivedi, A. D., Dubey, S. P., Sillanpää, M., Kwon, Y. N., Lee, C., & Varma, R. S. (2015). Fate of engineered nanoparticles: Implications in the environment. Coordination Chemistry Reviews, 287, 64–78. https://doi.org/10.1016/j.ccr.2014.12.014. (PMID: 10.1016/j.ccr.2014.12.014)
El-Batal, A. I., Gharib, F. A. E. L., Ghazi, S. M., Hegazi, A. Z., & Hafz, A. G. M. A. E. (2016). Physiological responses of two varieties of common bean (Phaseolus vulgaris L.) to foliar application of silver nanoparticles. Nanomaterials and Nanotechnology, 6, 13. https://doi.org/10.5772/62202. (PMID: 10.5772/62202)
Elmer, W. H., Zuverza-Mena, N., Triplett, L. R., Roberts, E. L., Silady, R. A., & White, J. C. (2021). Foliar application of copper oxide nanoparticles suppresses Fusarium wilt development on chrysanthemum. Environmental Science & Technology, 55, 10805–10810. https://doi.org/10.1021/acs.est.1c02323. (PMID: 10.1021/acs.est.1c02323)
El-Nagar, D. A., & Abdel-Halim, K. Y. (2021). Remediation of heavy metals in contaminated soil by using nano-bentonite, nano-hydroxyapatite, and nano-composite. Land Degradation & Development, 32, 4562–4573. https://doi.org/10.1002/ldr.4052. (PMID: 10.1002/ldr.4052)
El-Saadony, M. T., Desoky, E. S. M., Saad, A. M., Eid, R. S. M., Selem, E., & Elrys, A. S. (2021a). Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. Journal of Environmental Sciences, 106, 1–14. https://doi.org/10.1016/j.jes.2021.01.012. (PMID: 10.1016/j.jes.2021.01.012)
El-Saadony, M. T., Saad, A. M., Najjar, A. A., Alzahrani, S. O., Alkhatib, F. M., Shafi, M. E., Selem, E., Desoky, E. S. M., Fouda, S. E. E., El-Tahan, A. M., & Hassan, M. A. A. (2021b). The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 28, 4461–4471. https://doi.org/10.1016/j.sjbs.2021.04.043. (PMID: 10.1016/j.sjbs.2021.04.043)
Emamverdian, A., Ding, Y., Mokhberdoran, F., Ahmad, Z., & Xie, Y. (2020). Determination of heavy metal tolerance threshold in a bamboo species (Arundinaria pygmaea) as treated with silicon dioxide nanoparticles. Global Ecology and Conservation, 24, e01306. https://doi.org/10.1016/j.gecco.2020.e01306. (PMID: 10.1016/j.gecco.2020.e01306)
Faizan, M., Sharma, P., Sultan, H., Alam, P., Sehar, S., Rajput, V. D., & Hayat, S. (2024). Nano-priming: Improving plant nutrition to support the establishment of sustainable agriculture under heavy metal stress. Plant Nano Biology, 10, 100096. https://doi.org/10.1016/j.plana.2024.100096. (PMID: 10.1016/j.plana.2024.100096)
Fallah, S., Yusefi-Tanha, E., & Peralta-Videa, J. R. (2024). Interaction of nanoparticles and reactive oxygen species and their impact on macromolecules and plant production. Plant Nano Biology, 10, 100105. https://doi.org/10.1016/j.plana.2024.100105. (PMID: 10.1016/j.plana.2024.100105)
Fangel, J. U., Ulvskov, P., Knox, J. P., Mikkelsen, M. D., Harholt, J., Popper, Z. A., & Willats, W. G. T. J. (2012). Cell wall evolution and diversity. Frontiers in Plant Science, 3, 152. https://doi.org/10.3389/fpls.2012.00152. (PMID: 10.3389/fpls.2012.00152)
Feng, Y., Kreslavski, V. D., Shmarev, A. N., Ivanov, A. A., Zharmukhamedov, S. K., Kosobryukhov, A., Yu, M., Allakhverdiev, S. I., & Shabala, S. (2022). Effects of iron oxide nanoparticles (Fe 3 O 4 ) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants, 11, 1894. https://doi.org/10.3390/plants11141894. (PMID: 10.3390/plants11141894)
Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C., & Yang, P. (2006). Mechanism of nano-anatase TiO 2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research, 111, 239–253. https://doi.org/10.1385/BTER:111:1:239. (PMID: 10.1385/BTER:111:1:239)
Gao, F., Liu, C., Qu, C., et al. (2008). Was improvement of spinach growth by nano-TiO 2 treatment related to the changes of Rubisco activase? BioMetals, 21, 211–217. https://doi.org/10.1007/s10534-007-9110-y. (PMID: 10.1007/s10534-007-9110-y)
Gao, X., Rodrigues, S. M., Spielman-Sun, E., Lopes, S., Rodrigues, S., Zhang, Y., Avellan, A., Duarte, R. M. B. O., Duarte, A., Casman, E. A., & Lowry, G. V. (2019). Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environmental Science & Technology, 53(9), 4959–4967. https://doi.org/10.1021/acs.est.8b07243. (PMID: 10.1021/acs.est.8b07243)
Gao, Y., Liao, X., Deng, J., Zhao, J., et al. (2025). Application of silica nanoparticles induces different effects on inorganic and methylated arsenic accumulation in rice grains: Insights from arsenic transformation in soil. Journal of Agricultural and Food Chemistry, 73(18), 10840–10848. https://doi.org/10.1021/acs.jafc.5c00644. (PMID: 10.1021/acs.jafc.5c00644)
Ghalandarzadeh, S., Maghoul, P., Ghalandarzadeh, A., & Courcelles, B. (2024). Effect of nanoparticle-enhanced biocementation in kaolinite clay by microbially induced calcium carbonate precipitation. Construction and Building Materials, 414, 134939. https://doi.org/10.1016/j.conbuildmat.2024.134939. (PMID: 10.1016/j.conbuildmat.2024.134939)
Giorgetti, L., Spanò, C., Muccifora, S., Bottega, S., Barbieri, F., Bellani, L., & Castiglione, M. R. (2020). Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry, 149, 170–177. https://doi.org/10.1016/j.plaphy.2020.02.014. (PMID: 10.1016/j.plaphy.2020.02.014)
Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wan, J., Zhang, C., Cheng, M., Qin, X., & Xue, W. (2017a). Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environmental Science & Technology, 51, 11308–11316. https://doi.org/10.1021/acs.est.7b03164. (PMID: 10.1021/acs.est.7b03164)
Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., & Zeng, E. Y. (2017b). Reduction of Cr (VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595, 743–751. https://doi.org/10.1016/j.scitotenv.2017.03.282. (PMID: 10.1016/j.scitotenv.2017.03.282)
Gonzalez, P., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2010). Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 10, 1–14. https://doi.org/10.1111/j.1466-8238.2010.00558.x. (PMID: 10.1111/j.1466-8238.2010.00558.x)
Govea-Alcaide, E., Masunaga, S. H., De Souza, A., Fajardo-Rosabal, L., Effenberger, F. B., Rossi, L. M., & Jardim, R. F. (2016). Tracking iron oxide nanoparticles in plant organs using magnetic measurements. Journal of Nanoparticle Research, 18, 1–13. https://doi.org/10.1007/s11051-016-3610-z. (PMID: 10.1007/s11051-016-3610-z)
Gruyer, N., Dorais, M., Bastien, C., Dassylva, N., Triffault-Bouchet G. (2013). Interaction between silver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant. (pp. 795–800).
Gul, I., Manzoor, M., Hashmi, I., Bhatti, M. F., Kallerhoff, J., & Arshad, M. (2019). Plant uptake and leaching potential upon the application of amendments in soils spiked with heavy metals (Cd and Pb). Journal of Environmental Management, 249, 109408. https://doi.org/10.1016/j.jenvman.2019.109408. (PMID: 10.1016/j.jenvman.2019.109408)
Gunsolus, I. L., Mousavi, M. P. S., Hussein, K., Bühlmann, P., & Haynes, C. L. (2015). Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environmental Science & Technology, 49(13), 8078–8086. https://doi.org/10.1021/acs.est.5b01496. (PMID: 10.1021/acs.est.5b01496)
Hong, J., Wang, C., Wagner, D. C., Gardea-Torresdey, J. L., He, F., & Rico, C. M. (2021). Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano, 8, 1196–1210. https://doi.org/10.1039/D0EN01129K. (PMID: 10.1039/D0EN01129K)
Hoppe, M., Mikutta, R., Utermann, J., Duijnisveld, W., & Guggenberger, G. (2014). Retention of sterically and electrosterically stabilized silver nanoparticles in soils. Environmental Science & Technology, 48, 12628–12635. https://doi.org/10.1021/es5026189. (PMID: 10.1021/es5026189)
Horton, P., & Ruban, A. (2005). Molecular design of the photosystem II light-harvesting antenna: Photosynthesis and photoprotection. Journal of Experimental Botany, 56, 365–373. https://doi.org/10.1093/jxb/eri023. (PMID: 10.1093/jxb/eri023)
Houmani, H., Ben Slimene Debez, I., Turkan, I., Mahmoudi, H., Abdelly, C., Koyro, H.-W., & Debez, A. (2024). Revisiting the potential of seed nutri-priming to improve stress resilience and nutritive value of cereals in the context of current global challenges. Agronomy, 14(7), 1415. https://doi.org/10.3390/agronomy14071415. (PMID: 10.3390/agronomy14071415)
Hristozov, D., Gottardo, S., Semenzin, E., Oomen, A., Bos, P., Peijnenburg, W., Tongeren, M.-v, Nowack, B., Hunt, N., Brunelli, A., Scott-Fordsmand, J. J., Tran, L., & Marcomini, A. (2016). Frameworks and tools for risk assessment of manufactured nanomaterials. Environment International, 95, 36–53. https://doi.org/10.1016/j.envint.2016.07.016. (PMID: 10.1016/j.envint.2016.07.016)
Hu, P., An, J., Faulkner, M. M., Wu, H., Li, Z., Tian, X., & Giraldo, J. P. (2020). Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 14, 7970–7986. https://doi.org/10.1021/acsnano.9b09178. (PMID: 10.1021/acsnano.9b09178)
Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and Surfaces, B: Biointerfaces, 121, 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027. (PMID: 10.1016/j.colsurfb.2014.05.027)
Hussain, A., Rizwan, M., Ali, Q., & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research, 26, 7579–7588. https://doi.org/10.1007/s11356-019-04210-5. (PMID: 10.1007/s11356-019-04210-5)
Hussain, A., Rizwan, M., Ali, S., Rehman, M. Z. U., Qayyum, M. F., Nawaz, R., Ahmad, A., Asrar, M., Ahmad, S. R., Alsahli, A. A., & Alyemeni, M. N. (2021). Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. Ecotoxicology and Environmental Safety, 215, 112139. https://doi.org/10.1016/j.ecoenv.2021.112139. (PMID: 10.1016/j.ecoenv.2021.112139)
Hussain, B., Abbas, A., Saleem, A. R., Liu, S., Pu, S., & Farooq, M. (2024a). Uptake, agglomeration, and detoxification of trace metals and metalloids in plants. Journal of Soil Science and Plant Nutrition, 24, 4965–4983. https://doi.org/10.1007/s42729-024-01885-9. (PMID: 10.1007/s42729-024-01885-9)
Hussain, B., Zhu, H., Xiang, C., Mengfei, L., Zhu, B., Liu, S., Ma, H., & Pu, S. (2024b). Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. Environment International, 194, 109106. https://doi.org/10.1016/j.envint.2024.109106. (PMID: 10.1016/j.envint.2024.109106)
Hussein, M., & Abou-Baker, N. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society Open Science, 5, 171809. https://doi.org/10.1098/rsos.171809. (PMID: 10.1098/rsos.171809)
Iqbal, M. S., Singh, A. K., Singh, S. P., Ansari, M. I. (2020). Nanoparticles and plant interaction with respect to stress response. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences (pp. 1–15). Springer, Cham.
Iqbal, M. S., Singh, A. K., Singh, S. P., & Ansari, M. I. (2020a). Nanoparticles and plant interaction with respect to stress response. In I. Bhushan, V. K. Singh, & D. K. Tripathi (Eds.), Nanomaterials and Environmental Biotechnology, Nanotechnology in the Life Sciences (pp. 1–15). Cham: Springer International Publishing.
Itroutwar, P. D., Kasivelu, G., Raguraman, V., Malaichamy, K., & Sevathapandian, S. K. (2020). Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology, 29, 101778. https://doi.org/10.1016/j.bcab.2020.101778. (PMID: 10.1016/j.bcab.2020.101778)
van Ittersum, M. K., van Bussel, L. G. J., Wolf, J., Grassini, P., van Wart, J., Guilpart, N., Claessens, L., de Groot, H., Wiebe, K., MasonD’Croz D et al. (2016). Can sub-Saharan Africa feed itself?. In: Proceedings of the National Academy of Sciences (PNAS) USA (pp. 14964–14969).
Janani, R., Gurunathan, B., Sivakumar, K., Varjani, S., Ngo, H. H., & Gnansounou, E. (2022). Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environmental Research, 203, 111815. https://doi.org/10.1016/j.envres.2021.111815. (PMID: 10.1016/j.envres.2021.111815)
Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., & Dashti, S. (2016a). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107, 265–276. https://doi.org/10.14720/aas.2016.107.2.01. (PMID: 10.14720/aas.2016.107.2.01)
Janmohammadi, M., Sabaghnia, N., Dashti, S., & Nouraein, M. (2016b). Investigation of foliar application of nano-micronutrientfertilizers and nano-titanium dioxide on some traits of barley. Biologija, 62, 148–156. https://doi.org/10.6001/biologija.v62i2.3340. (PMID: 10.6001/biologija.v62i2.3340)
Javed, Z., Dashora, K., Mishra, M., Fasake, V. D., & Srivastva, A. (2019). Effect of accumulation of nanoparticles in soil health-a concern on future. Frontiers in Nanoscience and Nanotechnology, 5, 1–9. https://doi.org/10.15761/FNN.1000181. (PMID: 10.15761/FNN.1000181)
Jiang, H. S., Yin, L. Y., Ren, N. N., Zhao, S. T., Li, Z., Zhi, Y., Shao, H., Li, W., & Gontero, B. (2017). Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology, 11(2), 157–167. https://doi.org/10.1080/17435390.2017.1278802. (PMID: 10.1080/17435390.2017.1278802)
Jorge de Souza, T. A., Rosa Souza, L. R., & Franchi, L. P. (2019). Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 171, 691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095. (PMID: 10.1016/j.ecoenv.2018.12.095)
Juárez-Maldonado, A., Ortega-Ortiz, H., González-Morales, S., Morelos-Moreno, Á., de la Cabrera- Fuente, M., Sandoval-Rangel, A., Cadenas-Pliego, G., & Benavides-Mendoza, A. (2019). Nanoparticles and nanomaterials as plant biostimulants. International Journal of Molecular Sciences, 20, 162. https://doi.org/10.3390/ijms20010162. (PMID: 10.3390/ijms20010162)
Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13, 677–684. https://doi.org/10.1038/s41565-018-0131-1. (PMID: 10.1038/s41565-018-0131-1)
Kasote, D. M., Katyare, S. S., Hegde, M. V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11, 982–991. (PMID: 10.7150/ijbs.12096)
Khalkhal, K., Asgari Lajayer, B., Ghorbanpour, M. (2020). An overview on the effect of soil physicochemical properties on the immobilization of biogenic nanoparticles. In: Biogenic Nano-Particles and their use in agro-ecosystems (pp. 133–160). Springer Singapore.
Khan, A. R., Fan, X., Salam, A., Azhar, W., et al. (2023). Melatonin-mediated resistance to copper oxide nanoparticles-induced toxicity by regulating the photosynthetic apparatus, cellular damages and antioxidant defense system in maize seedlings. Environmental Pollution, 316, 120639. https://doi.org/10.1016/j.envpol.2022.120639. (PMID: 10.1016/j.envpol.2022.120639)
Khanna, K., Kohli, S. K., Handa, N., Kaur, H., Ohri, P., Bhardwaj, R., Yousaf, B., Rinklebe, J., & Ahmad, P. (2021). Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 222, 112459. https://doi.org/10.1016/j.ecoenv.2021.112459. (PMID: 10.1016/j.ecoenv.2021.112459)
Khater, M. (2015). Effect of titanium nanoparticles (TiO 2 ) on growth, yield and chemical constituents of coriander plants. Arab Journal of Nuclear Science and Applications, 48, 187–194.
Konate, A., He, X., Zhang, Z., Ma, Y., Zhang, P., Alugongo, G. M., & Rui, Y. (2017). Magnetic (Fe 3 O 4 ) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability, 9, 790. https://doi.org/10.3390/su9050790. (PMID: 10.3390/su9050790)
Kumah, E. A., Fopa, R. D., Harati, S., Boadu, P., Zohoori, F. V., & Pak, R. (2023). Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health, 23, 1059. https://doi.org/10.1186/s12889-023-15958-4. (PMID: 10.1186/s12889-023-15958-4)
Kurczyńska, E., Godel-Jędrychowska, K., Sala, K., & Milewska-Hendel, A. (2021). Nanoparticles—plant interaction: What we know, where we are? Applied Sciences, 11, 5473. https://doi.org/10.3390/app11125473. (PMID: 10.3390/app11125473)
Kwak, J. I., Nam, S. H., & An, Y. J. (2023). Assessing the risks of silver nanoparticle-concentrated matrix application in agricultural soil: Implications for plant and soil enzymes. Comparative Biochemistry and Physiology Part C, Toxicology & Pharmacology, 269, 109631. https://doi.org/10.1016/j.cbpc.2023.109631. (PMID: 10.1016/j.cbpc.2023.109631)
Kwak, S. Y., Lew, T. T. S., Sweeney, C. J., Koman, V. B., Wong, M. H., Bohmert-Tatarev, K., Snell, K. D., Seo, J. S., Chua, N. H., & Strano, M. S. (2019). Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology, 14, 447–455. https://doi.org/10.1038/s41565-019-0375-4. (PMID: 10.1038/s41565-019-0375-4)
Landa, P. (2021). Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiology and Biochemistry, 161, 12–24. https://doi.org/10.1016/j.plaphy.2021.01.039. (PMID: 10.1016/j.plaphy.2021.01.039)
Larrañaga-Tapia, M., Betancourt-Tovar, B., Videa, M., Antunes-Ricardo, M., & Cholula-Díaz, J. L. (2024). Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Advances, 6(1), 51–71. https://doi.org/10.1039/D3NA00761H. (PMID: 10.1039/D3NA00761H)
Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cécillon, L., Ouerdane, L., Legros, S., & Sarret, G. (2014). Fate of pristine TiO 2 nanoparticles and aged paint-containing TiO 2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials, 273, 17–26. https://doi.org/10.1016/j.jhazmat.2014.03.014. (PMID: 10.1016/j.jhazmat.2014.03.014)
Lee, R. (2011). The outlook for population growth. Science, 333, 569–573. https://doi.org/10.1126/science.1208859. (PMID: 10.1126/science.1208859)
Lew, T. T. S., Wong, M. H., Kwak, S., Sinclair, R., Koman, V. B., & Strano, M. S. (2018). Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small (Weinheim an der Bergstrasse, Germany), 14, 1802086. https://doi.org/10.1002/smll.2018. (PMID: 10.1002/smll.2018)
Li, B., Chen, Y., Liang, W. Z., Mu, L., Bridges, W. C., Jacobson, A. R., & Darnault, C. J. (2017). Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma, 299, 54–62. https://doi.org/10.1016/j.geoderma.2017.03.027. (PMID: 10.1016/j.geoderma.2017.03.027)
Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3, 929–937. https://doi.org/10.1038/s41893-020-0567-9. (PMID: 10.1038/s41893-020-0567-9)
Li, M., Zhang, P., Guo, Z., Cao, W., Gao, L., Li, Y., Tian, C. F., Chen, Q., Shen, Y., Ren, F., Rui, Y., White, J. C., & Lynch, I. (2023). Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS Nano, 17, 14761–14774. https://doi.org/10.1021/acsnano.3c02783. (PMID: 10.1021/acsnano.3c02783)
Li, Z., & Huang, J. (2014). Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica chinensis L.) from cadmium-contaminated soil. Journal of Nanomaterials, 2014, 470962. https://doi.org/10.1155/2014/470962. (PMID: 10.1155/2014/470962)
Lian, F., & Xing, B. (2024). From bulk to nano: Formation, features, and functions of nano-black carbon in biogeochemical processes. Environmental Science & Technology, 58(36), 15910–15925. https://doi.org/10.1021/acs.est.4c07027. (PMID: 10.1021/acs.est.4c07027)
Lian, M., Wang, L., Feng, Q., Niu, L., Zhao, Z., Wang, P., Song, C., Li, X., & Zhang, Z. (2021). Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment. Environmental Pollution, 280, 116879. https://doi.org/10.1016/j.envpol.2021.116879. (PMID: 10.1016/j.envpol.2021.116879)
Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42, 5580–5585. https://doi.org/10.1021/es800422x. (PMID: 10.1021/es800422x)
Linkov, I., Steevens, J., Adlakha-Hutcheon, G., et al. (2009). Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: Summary of NATO Advanced Research Workshop. Journal of Nanoparticle Research, 11, 513–527. https://doi.org/10.1007/s11051-008-9514-9. (PMID: 10.1007/s11051-008-9514-9)
Liu, C., Wei, L., Zhang, S., Xu, X., & Li, F. (2014). Effects of nanoscale silica sol foliar application on arsenic uptake, distribution and oxidative damage defense in rice (Oryza sativa L.) under arsenic stress. RSC Advances, 4, 57227–57234. https://doi.org/10.1039/C4RA08496A. (PMID: 10.1039/C4RA08496A)
Longhin, E. M., Rios‑Mondragon, I., Mariussen, E., Zheng, Z., Busquets, M., Gajewicz‑Skretna, A., Hofshagen, O.-B., Gómez Bastus, N., Puntes, V. F., Cimpan, M. R., Shaposhnikov, S., Dusinska, M., & Rundén‑Pran, E. (2024). Hazard assessment of nanomaterials: How to meet the requirements for (next generation) risk assessment. Particle and Fibre Toxicology, 21, 54. https://doi.org/10.1186/s12989-024-00615-4. (PMID: 10.1186/s12989-024-00615-4)
Lowry, G. V., Avellan, A., & Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 14, 517–522. https://doi.org/10.1038/s41565-019-0461-7. (PMID: 10.1038/s41565-019-0461-7)
Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science & Technology, 46, 6893–6899. https://doi.org/10.1021/es300839e. (PMID: 10.1021/es300839e)
Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R., & Tao, M. X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.
Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metalbased nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6, 41–59. https://doi.org/10.1039/C8EN00645H. (PMID: 10.1039/C8EN00645H)
Mahato, J. K., & Gupta, S. K. (2022). Relative assessment of activated carbon and Nano-Material based adsorbents used for obliteration of THMs precursors-regeneration and techno-economic feasibility analysis. Advanced Powder Technology, 33(8), 103700. https://doi.org/10.1016/j.apt.2022.103700. (PMID: 10.1016/j.apt.2022.103700)
Mahmoud, A. W. M., Abdeldaym, E. A., Abdelaziz, S. M., El-Sawy, M. B. I., & Mottaleb, S. A. (2020). Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy, 10, 19. https://doi.org/10.3390/agronomy10010019. (PMID: 10.3390/agronomy10010019)
Mahra, S., Tripathi, S., Tiwari, K., Sharma, S., Mathew, S., Kumar, V., & Sharma, S. (2025). Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation. Plant Nano Biology, 11, 100124. https://doi.org/10.1016/j.plana.2024.100124. (PMID: 10.1016/j.plana.2024.100124)
Manesh, R. R., Grassi, G., Bergami, E., Marques-Santos, L., Faleri, C., Liberatori, G., & Corsi, I. (2018). Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicology and Environmental Safety, 148, 359–366. https://doi.org/10.1016/j.ecoenv.2017.10.051. (PMID: 10.1016/j.ecoenv.2017.10.051)
Meier, S., Moore, F., Morales, A., González, M. E., Seguel, A., Meriño-Gergichevich, C., Rubilar, O., Cumming, J., Aponte, H., & Alarcón, D. (2020). Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plant Physiology and Biochemistry, 151, 673–680. https://doi.org/10.1016/j.plaphy.2020.04.025. (PMID: 10.1016/j.plaphy.2020.04.025)
Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (2001). Boron. In K. Mengel, E. A. Kirkby, H. Kosegarten, & T. Appel (Eds.), Principles of plant nutrition (pp. 621–628). Dordrecht: Springer. (PMID: 10.1007/978-94-010-1009-2_18)
Milewska-Hendel, A., Zubko, M., Karcz, J., Stróż, D., & Kurczyńska, E. (2017). Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Scientific Reports, 7, 3014. https://doi.org/10.1038/s41598-017-02965-w. (PMID: 10.1038/s41598-017-02965-w)
Miller, G., & Kinnear, S. (2007). Nanotechnology the new threat to food. Clean Food Org, 4, 1–7.
Mishra, V., Mishra, R. K., Dikshit, A., Pandey, A. C. (2014). Interactions of nanoparticles with plants. In: Emerging technologies and management of crop stress tolerance (pp. 159–180). Elsevier.
Mitra, D., Adhikari, P., Djebaili, R., Thathola, P., Joshi, K., Pellegrini, M., Adeyemi, N. O., Mohapatra, P. K., Nayak, A. K., Shanmugam, V., & Panneerselva, P. (2023). Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. Plant Physiology and Biochemistry, 196, 103–120. https://doi.org/10.1016/j.plaphy.2023.01.017. (PMID: 10.1016/j.plaphy.2023.01.017)
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9. (PMID: 10.1016/S1360-1385(02)02312-9)
Morales-Espinoza, M. C., Cadenas-Pliego, G., Pérez-Alvarez, M., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Benavides-Mendoza, A., Valdés-Reyna, J., & Juárez-Maldonado, A. (2019). Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under nacl stress. Molecules, 24, 3030. https://doi.org/10.3390/molecules24173030. (PMID: 10.3390/molecules24173030)
Morteza, E., Moaveni, P., Farahani, H. A., & Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO 2 spraying at various growth stages. Springerplus, 2, 1–5. https://doi.org/10.1186/2193-1801-2-247. (PMID: 10.1186/2193-1801-2-247)
Mpongwana, N., & Rathilal, S. A. (2022). Review of the techno-economic feasibility of nanoparticle application for wastewater treatment. Water, 14(10), 1550. https://doi.org/10.3390/w14101550. (PMID: 10.3390/w14101550)
Mullins, C. E., MacLeod, D. A., Northcote, K. H., Tisdall, J. M., & Young, I. M. (1990). Hardsetting soils: Behavior, occurrence, and management. Advances in soil science: Soil degradation (Vol. 11, pp. 37–108). Springer, New York: New York, NY.
Munyaneza, V., Zhang, W., Haider, S., Ren, L., Ali, A., Kant, S., & Ding, G. (2025). Mitigating metal toxicity in plants using nanoparticles: Mechanisms and implications for sustainable agriculture. Journal of Agricultural and Food Chemistry, 73, 17374–17386. https://doi.org/10.1021/acs.jafc.5c04693. (PMID: 10.1021/acs.jafc.5c04693)
Murali, M., Gowtham, H. G., Singh, S. B., Shilpa, N., Aiyaz, M., Alomary, M. N., Alshamrani, M., Salawi, A., Almoshari, Y., Ansari, M. A., & Amruthesh, K. N. (2022). Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. Science of the Total Environment, 811, 152249. https://doi.org/10.1016/j.scitotenv.2021.152249. (PMID: 10.1016/j.scitotenv.2021.152249)
Mushtaq, A., Jamil, N., Rizwan, S., Mandokhel, F., Riaz, M., Hornyak G., Malghani, M. N., Shahwani, M. N. (2018). Engineered silica nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas. In: IOP conference series: materials science and engineering. IOP Publishing( p. 012029). https://doi.org/10.1088/1757-899X/414/1/012029 .
Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179, 154–163. https://doi.org/10.1016/j.plantsci.2010.04.012. (PMID: 10.1016/j.plantsci.2010.04.012)
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology, 17, 372–386. https://doi.org/10.1007/s10646-008-0214-0. (PMID: 10.1007/s10646-008-0214-0)
Nazir, M. M., Noman, M., Ahmed, T., Ali, S., Ulhassan, Z., Zeng, F., & Zhang, G. (2022). Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. Journal of Hazardous Materials, 438, 129498. https://doi.org/10.1016/j.jhazmat.2022.129498. (PMID: 10.1016/j.jhazmat.2022.129498)
Nile, S. H., Thiruvengadam, M., Wang, Y., et al. (2022a). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology, 20, 254. https://doi.org/10.1186/s12951-022-01423-8. (PMID: 10.1186/s12951-022-01423-8)
Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xia, J., & Kai, G. (2022b). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology, 20, 254. https://doi.org/10.1186/s12951-022-01423-8. (PMID: 10.1186/s12951-022-01423-8)
Osman, A. I., El-Monaem, E. M. A., Elgarahy, A. M., Aniagor, C. O., Hosny, M., Farghali, M., Rashad, E., Ejimofor, M. I., LópezMaldonado, E. A., Ihara, I., Yap, P. S., Rooney, D. W., & Eltaweil, A. S. (2023). Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environmental Chemistry Letters, 21, 2337–2398. https://doi.org/10.1007/s10311-023-01603-4. (PMID: 10.1007/s10311-023-01603-4)
Osman, A. I., Fang, B., Zhang, Y., Liu, Y., Yu, J., Farghali, M., Rashwan, A. K., Chen, Z., Chen, L., Ihara, I., Rooney, D. W., & Tap, P.-S. (2024). Life cycle assessment and techno-economic analysis of sustainable bioenergy production: A review. Environmental Chemistry Letters, 22, 1115–1154. https://doi.org/10.1007/s10311-023-01694-z. (PMID: 10.1007/s10311-023-01694-z)
Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., Yuan, X., Zheng, L., Yang, Y., Yang, J., Zhen, X., Chen, Y., & Shi, J. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 197, 99–107. https://doi.org/10.1016/j.envpol.2014.12.008. (PMID: 10.1016/j.envpol.2014.12.008)
Peng, C., Tong, H., Shen, C., Sun, L., Yuan, P., He, M., & Shi, J. (2020). Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Science of the Total Environment, 713, 136662. https://doi.org/10.1016/j.scitotenv.2020.136662. (PMID: 10.1016/j.scitotenv.2020.136662)
Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12. https://doi.org/10.3389/fenvs.2017.00012. (PMID: 10.3389/fenvs.2017.00012)
Pîrvulescu, A., Sala, F., & Boldea, M. (2015). Variation of chlorophyll content in sunflower under the influence of magnetic nanofluids. AIP Conference Proceedings. AIP Publishing LLC, 1648, 670009. https://doi.org/10.1063/1.4912904. (PMID: 10.1063/1.4912904)
Praveen, A., Khan, E., Ngiimei, D. S., Perwez, M., Sardar, M., & Gupta, M. (2018). Iron oxide nanoparticles as nano-adsorbents: A possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). Journal of Plant Growth Regulation, 37, 612–624. https://doi.org/10.1007/s00344-017-9760-0. (PMID: 10.1007/s00344-017-9760-0)
Pulizzi, F. (2019). Nano in the future of crops. Nature Nanotechnology, 14, 507. https://doi.org/10.1038/s41565-019-0475-1. (PMID: 10.1038/s41565-019-0475-1)
Purohit, J., Chattopadhyay, A., & Singh, N. K. (2019). Green synthesis of microbial nanoparticle: approaches to application. In R. Prasad (Ed.), Microbial nanobionics nanotechnology in the life sciences (pp. 35–60). Cham: Springer. (PMID: 10.1007/978-3-030-16534-5_3)
Qian, W., Liang, J. Y., Zhang, W. X., Huang, S. T., & Diao, Z. H. (2022). A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil. Journal of Environmental Science (China), 113, 231–241. https://doi.org/10.21203/rs.3.rs-250897/v1. (PMID: 10.21203/rs.3.rs-250897/v1)
Rai-Kalal, P., & Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160, 341–351. https://doi.org/10.1016/j.plaphy.2021.01.032. (PMID: 10.1016/j.plaphy.2021.01.032)
Rajpal, V. R., Nongthongbam, B., Bhatia, M., et al. (2025). The nano-paradox: Addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. Journal of Nanobiotechnology, 23(1), 314. https://doi.org/10.1186/s12951-025-03371-5. (PMID: 10.1186/s12951-025-03371-5)
Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N., & Biswas, P. (2016). Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 7, 1288. https://doi.org/10.3389/fpls.2016.01288. (PMID: 10.3389/fpls.2016.01288)
Rawat, M., Nayan, R., Negi, B., Zaidi, M., & Arora, S. (2017). Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiology and Biochemistry, 118, 274–284. https://doi.org/10.1016/j.plaphy.2017.06.021. (PMID: 10.1016/j.plaphy.2017.06.021)
Razzak, S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S. M. K., & Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168. (PMID: 10.1016/j.envadv.2022.100168)
Razzaq, S., Zhou, B., Ullah, Z., Zia-ur-Rehman, M., Guo, H., Adil, M., Xiaopeng, C., & Qian, L. W. (2024). Exploring the impact of organic and inorganic amendments, with foliar application of iron nanoparticles, on cadmium stabilization and growth of maize in wastewater irrigated-soil. Journal of Hazardous Materials Letters, 5, 100111. https://doi.org/10.1016/j.hazl.2024.100111. (PMID: 10.1016/j.hazl.2024.100111)
Regni, L., Del Buono, D., Micheli, M., Facchin, S. L., Tolisano, C., & Proietti, P. (2022). Effects of biogenic ZnO nanoparticles on growth, physiological, biochemical traits and antioxidants on olive tree in vitro. Horticulturae, 8, 161. https://doi.org/10.3390/horticulturae8020161. (PMID: 10.3390/horticulturae8020161)
Rehman, S., Sun, H., Hanif, M., Peng, T., Tang, X., Satti, O. T., & Bilal, M. (2025). Environmentally friendly nitrogen doped paired mineral-carbon for catalytic degradation of diethyl phthalate and crop damage mitigation. Chemical Engineering Journal, 508, 160321. https://doi.org/10.1016/j.cej.2025.160321. (PMID: 10.1016/j.cej.2025.160321)
Rezaei, M., & Abbasi, H. (2014). Foliar application of nanochelate and non-nanochelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iranian Journal of Plant Physiology, 4, 1137–1144.
Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59, 3485–3498. https://doi.org/10.1021/jf104517j. (PMID: 10.1021/jf104517j)
Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ur Rehman, M. Z., & Waris, A. A. (2019a). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120. (PMID: 10.1016/j.chemosphere.2018.09.120)
Rizwan, M., Ali, S., ur Rehman, M. Z., Malik, S., Adrees, M., Qayyum, M. F., Alamri, S. A., Alyemeni, M. N., & Ahmad, P. (2019b). Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiologiae Plantarum, 41, 35. https://doi.org/10.1007/s11738-019-2828-7. (PMID: 10.1007/s11738-019-2828-7)
Rizwan, M., Ali, S., ur Rehman, M. Z., Riaz, M., Adrees, M., Hussain, A., Zahir, Z. A., & Rinklebe, J. (2021). Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicology and Environmental Safety, 221, 112437. https://doi.org/10.1016/j.ecoenv.2021.112437. (PMID: 10.1016/j.ecoenv.2021.112437)
Rizwan, M., Noureen, S., Ali, S., Anwar, S., Rehman, M. Z., Qayyum, M. F., & Hussain, A. (2019c). Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. Journal of Soils and Sediments, 19(11), 3749–3759. https://doi.org/10.1007/s11368-019-02327-1. (PMID: 10.1007/s11368-019-02327-1)
Romero-Franco, M., Godwin, H. A., Bilal, M., & Cohen, Y. (2017). Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein Journal of Nanotechnology, 8, 989–1014. https://doi.org/10.3762/bjnano.8.101. (PMID: 10.3762/bjnano.8.101)
Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry, 135, 160–166. https://doi.org/10.1016/j.plaphy.2018.12.005. (PMID: 10.1016/j.plaphy.2018.12.005)
Rossi, L., Zhang, W., & Ma, X. (2017). Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229, 132–138. https://doi.org/10.1016/j.envpol.2017.05.083. (PMID: 10.1016/j.envpol.2017.05.083)
Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bulletin of the National Research Centre, 43, 38. https://doi.org/10.1186/s42269-019-0077-y. (PMID: 10.1186/s42269-019-0077-y)
Salama, H. M. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3(10), 190–197.
Sathish, T., Ahalya, N., Thirunavukkarasu, M., Senthil, T. S., Hussain, Z., Siddiqui, M. I. H., Panchal, H., & Sadasivuni, K. K. (2024). A comprehensive review on the novel approaches using nanomaterials for the remediation of soil and water pollution. Alexandria Engineering Journal, 86, 373–385. https://doi.org/10.1016/j.aej.2023.10.038. (PMID: 10.1016/j.aej.2023.10.038)
Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016a). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology, 10, 257–278. https://doi.org/10.3109/17435390.2015.104832. (PMID: 10.3109/17435390.2015.104832)
Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2016b). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology, 10, 257–278. https://doi.org/10.3109/17435390.2015.1048326. (PMID: 10.3109/17435390.2015.1048326)
Seif, S. M., Sorooshzadeh, A. H., Rezazadeh, S., & Naghdibadi, H. A. (2011). Effect of nano silver and silver nitrate on seed yield of borage. Journal of Medicinal Plants Research, 5(2), 171–175.
Sendra, M., Yeste, M. P., Gatica, J. M., Garrido, M., & Blasco, J. (2017). Homoagglomeration and heteroagglomeration of TiO 2 , in nanoparticle and bulk form, onto freshwater and marine microalgae. Science of the Total Environment, 592, 403–411. https://doi.org/10.1016/j.scitotenv.2017.03.127. (PMID: 10.1016/j.scitotenv.2017.03.127)
Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063. (PMID: 10.1016/j.jhazmat.2016.11.063)
Shang, H., Ma, C., Li, C., Cai, Z., Shen, Y., Han, L., Wang, C., Tran, J., Elmer, W. H., White, J. C., & Xing, B. (2023). Aloe vera extract gel-biosynthesized selenium nanoparticles enhance disease resistance in lettuce by modulating the metabolite profile and bacterial endophytes composition. ACS Nano, 17, 13672–13684. https://doi.org/10.1021/acsnano.3c02790. (PMID: 10.1021/acsnano.3c02790)
Sharifi, R., Mohammadi, K., & Rokhzadi, A. (2016). Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environmental and Experimental Biology, 14, 151–156. https://doi.org/10.22364/eeb.14.21. (PMID: 10.22364/eeb.14.21)
Sharma, R., Sharma, N., Prashar, A., Hansa, A., Lajayer, B. A., & Price, G. W. (2024). Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. Science of the Total Environment, 906, 167697. https://doi.org/10.1016/j.scitotenv.2023.167697. (PMID: 10.1016/j.scitotenv.2023.167697)
Sharmila, P., & Karthikeyan, E. (2025). Emerging nanomedical techniques: Transforming contaminant management in soil and water. Sustainable Chemistry for Climate Action, 7, 100116. https://doi.org/10.1016/j.scca.2025.100116. (PMID: 10.1016/j.scca.2025.100116)
Shen, Z., Chen, Z., Hou, Z., Li, T., & Lu, X. (2015). Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Frontiers of Environmental Science & Engineering, 9, 912–918. https://doi.org/10.1007/s11783-015-0789-7. (PMID: 10.1007/s11783-015-0789-7)
Shin, Y. J., Kwak, J. I., & An, Y. J. (2012). Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 88(4), 524–529. https://doi.org/10.1016/j.chemosphere.2012.03.010. (PMID: 10.1016/j.chemosphere.2012.03.010)
Shukla, P. K., Misra, P., & Kole, C. (2016). Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. In C. Kole, D. S. Kumar, & M. V. Khodakovskaya (Eds.), Plant nanotechnology (pp. 183–218). Cham: Springer International Publishing. (PMID: 10.1007/978-3-319-42154-4_8)
Sibiya, N. P., Mahlangu, T. P., Tetteh, E. K., & Rathilal, S. (2025). Review on advancing heavy metals removal: The use of iron oxide nanoparticles and microalgae-based adsorbents. Cleaner Chemical Engineering, 11, 100137. https://doi.org/10.1016/j.clce.2024.100137. (PMID: 10.1016/j.clce.2024.100137)
Siddiqi, K. S., & Husen, A. (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters, 11, 400. https://doi.org/10.1186/s11671-016-1607-2. (PMID: 10.1186/s11671-016-1607-2)
Simonin, M., Richaume, A., Guyonnet, J. P., Dubost, A., Martins, J. M. F., & Pommier, T. (2016). Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports, 6, 33643. https://doi.org/10.1038/srep33643. (PMID: 10.1038/srep33643)
Singh Brar, R., Kumar, A., Kaur, S., Sandip, S., Anuj, K., & Sandeep, K. (2021). Impact of metal oxide nanoparticles on cotton (Gossypium hirsutum L.): A physiological perspective. Journal of Cotton Research, 4, 16. https://doi.org/10.1186/s42397-021-00092-6. (PMID: 10.1186/s42397-021-00092-6)
Singla, R., Kumari, A., Yadav, S. K. (2019). Impact of nanomaterials on plant physiology and functions. In: Nanomaterials and plant potential; springer science and business media LLC (pp. 349–377). Berlin, Germany.
Solanki, P., Bhargava A., Chhipa, H., Jain, N., Panwar, J. (2015). Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer (pp. 81–101).
Spielman-Sun, E., Avellan, A., Bland, G. D., Tappero, R. V., Acerbo, A. S., Unrine, J. M., Giraldo, J. P., & Lowry, G. V. (2019). Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environmental Science: Nano, 6, 2508–2519. https://doi.org/10.1039/C9EN00626E. (PMID: 10.1039/C9EN00626E)
Srivastav, A., Ganjewala, D., Singhal, R. K., & Rajput, V. D. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 23, 2556. https://doi.org/10.3390/plants10122556. (PMID: 10.3390/plants10122556)
Stanton, C., Sanders, D., Krämer, U., & Podar, D. (2022). Zinc in plants: Integrating homeostasis and biofortification. Molecular Plant, 15, 65–85. https://doi.org/10.1016/j.molp.2021.12.008. (PMID: 10.1016/j.molp.2021.12.008)
Steudle, E., & Peterson, C. A. (1988). How does water get through roots? Journal of Experimental Botany, 49, 775–788. https://doi.org/10.1093/jxb/49.322.775. (PMID: 10.1093/jxb/49.322.775)
Sun, H., Du, W., Peng, Q., Lv, Z., Mao, H., & Kopittke, P. M. (2020). Development of ZnO nanoparticles as an efficient Zn fertilizer: Using synchrotron-based techniques and laser ablation to examine elemental distribution in wheat grain. Journal of Agricultural and Food Chemistry, 68, 5068–5075. https://doi.org/10.1021/acs.jafc.0c00084. (PMID: 10.1021/acs.jafc.0c00084)
Sun, Q., Burton, E. D., Si, D., Fan, T., Cheng, H., Yu, Z., Shao, X., Cui, P., & Wang, Y. (2023). Coupling of dissolved organic matter molecular fractionation with iron and sulfur transformations during sulfidation–reoxidation cycling. Environmental Science & Technology, 57(43), 16327–16339. https://doi.org/10.1021/acs.est.3c03613. (PMID: 10.1021/acs.est.3c03613)
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203, 32–43. https://doi.org/10.1111/nph.12797. (PMID: 10.1111/nph.12797)
Szőllősi, R., Molnár, Á., Kondak, S., & Kolbert, Z. (2020). Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. phytotoxicity. Plants, 9(12), Article 1745. https://doi.org/10.3390/plants9121745. (PMID: 10.3390/plants9121745)
Tarafdar, J., Raliya, R., Mahawar, H., & Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3, 257–262. https://doi.org/10.1007/s40003-014-0113-y. (PMID: 10.1007/s40003-014-0113-y)
Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., & Tyagi, H. (2013). Small particles, big impacts: A review of the diverse applications of nanofluids. Journal of Applied Physics, 113, 011301. https://doi.org/10.1063/1.4754271. (PMID: 10.1063/1.4754271)
Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., & Yamashita, R. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2027–2045. https://doi.org/10.1098/rstb.2008.0284. (PMID: 10.1098/rstb.2008.0284)
Theng, B. K., & Yuan, G. (2008). Nanoparticles in the soil environment. Elements, 4(6), 395–399. https://doi.org/10.2113/gselements.4.6.395. (PMID: 10.2113/gselements.4.6.395)
Thiruvengadam, M., Chi, H. Y., & Kim, S.-H. (2024). Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. Plant Physiology and Biochemistry, 207, 108370. https://doi.org/10.1016/j.plaphy.2024.108370. (PMID: 10.1016/j.plaphy.2024.108370)
Thomas, J. M., & Harris, K. D. M. (2016). Some of tomorrow’s catalysts for processing renewable and non-renewable feedstocks, diminishing anthropogenic carbon dioxide and increasing the production of energy. Energy & Environmental Science Journal, 9, 687–708. https://doi.org/10.1039/C5EE03461B. (PMID: 10.1039/C5EE03461B)
Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70–81. https://doi.org/10.1016/j.plaphy.2016.06.026. (PMID: 10.1016/j.plaphy.2016.06.026)
Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry, 96, 189–198. https://doi.org/10.1016/j.plaphy.2015.07.026. (PMID: 10.1016/j.plaphy.2015.07.026)
Vafa, Z. N., Sirousmehr, A. R., Ghanbari, A., Khammari, I., & Falahi, N. (2015). Effects of nano zinc and humic acid on quantitative and qualitative characteristics of savory (Satureja hortensis L.). International Journal of Biosciences, 6, 124–136. https://doi.org/10.12692/ijb/6.3.124-136. (PMID: 10.12692/ijb/6.3.124-136)
Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwari, M., Sharma, N., & Sahi, S. V. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127. https://doi.org/10.1016/j.plaphy.2016.09.004. (PMID: 10.1016/j.plaphy.2016.09.004)
Visentin, C., da Silva Trentin, A. W., Braun, A. B., & Thomé, A. (2019). Lifecycle assessment of environmental and economic impacts of nano-iron synthesis process for application in contaminated site remediation. Journal of Cleaner Production, 231, 307–319. https://doi.org/10.1016/j.jclepro.2019.05.236. (PMID: 10.1016/j.jclepro.2019.05.236)
Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D. P., & Zhou, D. (2014). Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology, 164, 35–48. https://doi.org/10.1016/j.jconhyd.2014.05.007. (PMID: 10.1016/j.jconhyd.2014.05.007)
Wang, J. W., Cunningham, F. J., Goh, N. S., Boozarpour, N. N., Pham, M., & Landry, M. P. (2021a). Nanoparticles for protein delivery in planta. Current Opinion in Plant Biology, 60, 102052. https://doi.org/10.1016/j.pbi.2021.102052. (PMID: 10.1016/j.pbi.2021.102052)
Wang, R., Du, H., Wang, Y., Wang, D., Sun, Q., & Zhou, D. (2018). Retention of silver nanoparticles and silver ion to natural soils: Effects of soil physicochemical properties. Journal of Soils and Sediments, 18, 2491–2499. https://doi.org/10.1007/s11368-018-1918-2. (PMID: 10.1007/s11368-018-1918-2)
Wang, S., Wang, F., & Gao, S. (2015). Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research, 22, 2837–2845. https://doi.org/10.1007/s11356-014-3525-0. (PMID: 10.1007/s11356-014-3525-0)
Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalavithana, A. D., Oleszczu, P., Wang, X., & Ok, Y. S. (2019). Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 373, 820–834. https://doi.org/10.1016/j.jhazmat.2019.03.080. (PMID: 10.1016/j.jhazmat.2019.03.080)
Wang, X., Jiang, J., Dou, F., Li, X., Sun, W., & Ma, X. (2022a). Zinc fertilizers modified the formation and properties of iron plaque and arsenic accumulation in rice (Oryza sativa L.) in a life cycle study. Environmental Science & Technology, 56(12), 8209–8220. (PMID: 10.1021/acs.est.2c01767)
Wang, Y., Deng, C., Rawat, S., Cota-Ruiz, K., Medina-Velo, I., & Gardea-Torresdey, J. L. (2021b). Evaluation of the effects of nanomaterials on rice (Oryza sativa L.) responses: Underlining the benefits of nanotechnology for agricultural applications. ACS Agricultural Science & Technology, 1(2), 44–54. https://doi.org/10.1021/acsagscitech.1c00030. (PMID: 10.1021/acsagscitech.1c00030)
Wang, Y., Yang, Y., Shi, J., An, W., Lyu, T., & Zhang, P. (2024). Processes and mechanisms in remediation of aqueous chromium contamination by sulfidated nano-scale zerovalent iron (S-nZVI): Experimental and computational investigations. Journal of Hazardous Materials, 469, 134031. https://doi.org/10.1016/j.jhazmat.2024.134031. (PMID: 10.1016/j.jhazmat.2024.134031)
Wang, Z. P., Zhang, Z. B., Zheng, D. Y., Zhang, T. T., Li, X. L., Zhang, C., Yu, R., Wei, J. H., & Wu, Z. Y. (2022b). Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. Journal of Integrative Plant Biology, 64, 1145–1156. https://doi.org/10.1111/jipb.13263. (PMID: 10.1111/jipb.13263)
Watanabe, K., Odahara, M., Miyamoto, T., & Numata, K. (2021). Fusion peptide-based biomacromolecule delivery system for plant cells. ACS Biomaterials Science & Engineering, 7, 2246–2254. https://doi.org/10.1021/acsbiomaterials.1c00227. (PMID: 10.1021/acsbiomaterials.1c00227)
Wei, L., Liu, J., & Jiang, G. (2024). Nanoparticle-specific transformations dictate nanoparticle effects associated with plants and implications for nanotechnology use in agriculture. Nature Communications, 15, 7389. https://doi.org/10.1038/s41467-024-51741-8. (PMID: 10.1038/s41467-024-51741-8)
White, J. C., & Gardea-Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology, 13, 627–629. https://doi.org/10.1038/s41565-018-0223-y. (PMID: 10.1038/s41565-018-0223-y)
Williams, D. N., Pramanik, S., Brown, R. P., Zhi, B., McIntire, E., Hudson-Smith, N. V., Haynes, C. L., & Rosenzweig, Z. (2018). Adverse interactions of luminescent semiconductor quantum dots with Liposomes and Shewanella oneidensis. ACS. Applied Nano Materials, 1, 4788–4800. https://doi.org/10.1021/acsanm.8b01000. (PMID: 10.1021/acsanm.8b01000)
Wu, H., & Ge, Y. (2019). Excessive application of fertilizer, agricultural non-point source pollution, and farmers’ policy choice. Sustainability, 11, 1165. https://doi.org/10.3390/su11041165. (PMID: 10.3390/su11041165)
Wu, H., & Li, Z. (2022). Nano-enabled agriculture: How do nanoparticles cross barriers in plants? Plant Communications, 3, 6100346. https://doi.org/10.1016/j.xplc.2022.100346. (PMID: 10.1016/j.xplc.2022.100346)
Xin, X., Nepal, J., Wright, A. L., Yang, X., & He, Z. (2022). Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: Comparison of foliar spray and soil drench application. Journal of Cleaner Production, 363, 132630. https://doi.org/10.1016/j.jclepro.2022.132630. (PMID: 10.1016/j.jclepro.2022.132630)
Xu, C., Qi, J., Yang, W., Chen, Y., Yang, C., He, Y., Wang, J., & Lin, A. (2019). Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Science of the Total Environment, 686, 476–483. https://doi.org/10.1016/j.scitotenv.2019.05.330. (PMID: 10.1016/j.scitotenv.2019.05.330)
Xu, L., Liang, H. W., Yang, Y., & Yu, S. H. (2018). Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chemical Reviews, 118, 3209–3250. https://doi.org/10.1021/acs.chemrev.7b00208. (PMID: 10.1021/acs.chemrev.7b00208)
Yan, C., Huang, J., Cao, C., Li, R., Ma, Y., & Wang, Y. (2020). Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil. Environmental Science and Pollution Research, 27, 8058–8070. https://doi.org/10.1007/s11356-019-07347-5. (PMID: 10.1007/s11356-019-07347-5)
Yang, D., Ge, Q., Feng, X., Wang, R., Li, S., Wei, W., Zheng, J., Zhang, J., & Chen, H. (2023). “Soil for soil remediation” strategy driven on converting natural soils into Fe 2 O 3 -CAN-Type zeolite composites for dual ionic heavy metal-contaminated soil remediation: Universality, synergistic effects, and mechanism. ACS ES&T Engineering, 3(5), 714–724. https://doi.org/10.1021/acsestengg.2c00397. (PMID: 10.1021/acsestengg.2c00397)
Yang, D., Zhang, J., Yang, S., Wang, Y., Tang, X., Xu, J., & Liu, X. (2022). Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Science of the Total Environment, 814, 152798. https://doi.org/10.1016/j.scitotenv.2021.152798. (PMID: 10.1016/j.scitotenv.2021.152798)
Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO 2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110, 179–190. https://doi.org/10.1385/BTER:110:2:179. (PMID: 10.1385/BTER:110:2:179)
You, T., Liu, D., Chen, J., Yang, Z., Dou, R., Gao, X., & Wang, L. (2018). Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. Journal of Soils and Sediments, 18, 211–221. https://doi.org/10.1007/s11368-017-1716-2. (PMID: 10.1007/s11368-017-1716-2)
Yuan, H., Liu, Q., Fu, J., Wang, Y., Zhang, Y., Sun, Y., Tong, H., & Dhankher, O. P. (2023). Co-exposure of sulfur nanoparticles and Cu alleviate Cu stress and toxicity to oilseed rape Brassica napus L. Journal of Environmental Sciences, 124, 319–329. https://doi.org/10.1016/j.jes.2021.09.040. (PMID: 10.1016/j.jes.2021.09.040)
Zaheer, I. E., Ali, S., Saleem, M. H., Ali, M., Riaz, M., Javed, S., Sehar, A., Abbas, Z., Rizwan, M., El-Sheikh, M. A., & Alyemeni, M. N. (2020). Interactive role of zinc and iron lysine on Spinacia oleracea L. growth, photosynthesis and antioxidant capacity irrigated with tannery wastewater. Physiology and Molecular Biology of Plants, 26, 2435–2452. https://doi.org/10.1007/s12298-020-00912-0. (PMID: 10.1007/s12298-020-00912-0)
Zhang, L. (2001). Effects of foliar application of boron and dimilin on soybean yield; Mississippi agricultural & forestry experiment station: Starkville, MS, USA. https://www.mafes.msstate.edu/publications/research-reports/rr22-16.pdf .
Zhang, H., Goh, N. S., Wang, J. W., Pinals, R. L., González-Grandío, E., Demirer, G. S., Butrus, S., Fakra, S. C., Del Rio Flores, A., Zhai, R., Zhao, B., Park, S.-J., & Landry, M. P. (2022a). Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nature Nanotechnology, 17, 197–205. https://doi.org/10.1038/s41565-021-01018-8. (PMID: 10.1038/s41565-021-01018-8)
Zhang, H., Zhao, X., Bai, J., Tang, M., Du, W., Lv, Z., Siddique, K. H. M., & Mao, H. (2024). Effect of ZnO nanoparticle application on crop safety and soil environment: A case study of potato planting. Environmental Science: Nano, 11(1), 351–362. https://doi.org/10.1039/D3EN00680H. (PMID: 10.1039/D3EN00680H)
Zhang, P., Guo, Z., Monikh, F. A., Lynch, I., Valsami-Jones, E., & Zhang, Z. (2021). Growing rice (Oryza sativa) aerobically reduces phytotoxicity, uptake, and transformation of CeO 2 nanoparticles. Environmental Science & Technology, 55(13), 8654–8664. https://doi.org/10.1021/acs.est.0c08813. (PMID: 10.1021/acs.est.0c08813)
Zhang, S., Yi, K., Chen, A., Shao, J., Peng, L., & Luo, S. (2022b). Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: A review. Ecotoxicology, 31, 873–883. https://doi.org/10.1007/s10646-022-02565-z. (PMID: 10.1007/s10646-022-02565-z)
Zhang, W., Long, J., Li, J., Zhang, M., Ye, X., Chang, W., & Zeng, H. (2020a). Effect of metal oxide nanoparticles on the chemical speciation of heavy metals and micronutrient bioavailability in paddy soil. International Journal of Environmental Research and Public Health, 17, 2482. https://doi.org/10.3390/ijerph17072482. (PMID: 10.3390/ijerph17072482)
Zhang, X., Xiong, Z., Zhang, S., Ge, Y., Ma, W., Yan, L., Li, D., Wang, D., Deng, S., Zhao, Q., Wang, W., & Xing, B. (2020b). Response of soil enzyme activity and bacterial community to black phosphorus nanosheets. Environmental Science: Nano, 7(2), 404–413. https://doi.org/10.1039/C9EN00716D. (PMID: 10.1039/C9EN00716D)
Zhang, Y., Zeng, H., Yuan, Y., Jiang, C., Xie, W., Zheng, Y., & Peng, Y. (2025). Recent advances of nano zero-valent iron (nZVI) on the remediation of heavy metals polluted environment: Modified methods, mechanisms, influencing factors and application challenges. Journal of Environmental Chemical Engineering, 13, 119433. https://doi.org/10.1016/j.jece.2025.119433. (PMID: 10.1016/j.jece.2025.119433)
Zhao, F., Xin, X., Cao, Y., Su, D., Ji, P., Zhu, Z., & He, Z. (2021). Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials, 11(10), 2717. https://doi.org/10.3390/nano11102717. (PMID: 10.3390/nano11102717)
Zhao, G., Zhao, Y., Lou, W., Su, J., Wei, S., Yang, X., Wang, R., Guan, R., Pu, H., & Shen, W. (2019). Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 11, 10511–10523. https://doi.org/10.1039/c8nr10514f. (PMID: 10.1039/c8nr10514f)
Zhao, L., Peralta-Videa, J. R., Ren, M., Varela-Ramirez, A., Li, C., Hernandez-Viezcas, J. A., Aguilera, R. J., & Gardea-Torresdey, J. L. (2012). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chemical Engineering Journal, 184, 1–8. https://doi.org/10.1016/j.cej.2012.01.041. (PMID: 10.1016/j.cej.2012.01.041)
Zhao, Y., Tang, Y., Hu, L., et al. (2025). Growth and physiology effects of seed priming and foliar application of ZnO nanoparticles on Hibiscus syriacus L. Scientific Reports, 15, 22606. https://doi.org/10.1038/s41598-025-05059-0. (PMID: 10.1038/s41598-025-05059-0)
Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83–91. https://doi.org/10.1385/BTER:104:1:083. (PMID: 10.1385/BTER:104:1:083)
Zheng, T., Hou, J., Wu, T., Jin, H., Dai, Y., Xu, J., Yang, K., & Lin, D. (2024). Ferric oxide nanomaterials and plant-rhizobacteria symbionts cogenerate iron plaque for removing highly chlorinated contaminants in dryland soils. Environmental Science & Technology, 58(25), 11063–11073. https://doi.org/10.1021/acs.est.4c03133. (PMID: 10.1021/acs.est.4c03133)
Zhou, P., Jiang, Y., Adeel, M., Shakoor, N., Zhao, W., Liu, Y., Li, Y., Li, M., Azeem, I., Rui, Y., Tan, Z., White, J. C., Guo, Z., Lynch, I., & Zhang, P. (2023). Nickel oxide nanoparticles improve soybean yield and enhance nitrogen assimilation. Environmental Science & Technology, 57, 7547–7558. https://doi.org/10.1021/acs.est.3c00959. (PMID: 10.1021/acs.est.3c00959)
Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10, 713–717. https://doi.org/10.1039/B805998E. (PMID: 10.1039/B805998E)
Zia-ur-Rehman, M., Mfarrej, M. F. B., Usman, M., Anayatullah, S., Rizwan, M., Alharby, H. F., Zeid, I. M. A., Alabdallah, N. M., & Ali, S. (2023). Effect of iron nanoparticles and conventional sources of Fe on growth, physiology and nutrient accumulation in wheat plants grown on normal and salt-affected soils. Journal of Hazardous Materials, 458, 131861. https://doi.org/10.1016/j.jhazmat.2023.131861. (PMID: 10.1016/j.jhazmat.2023.131861)
Zou, C., Lu, T., Wang, R., Xu, P., Jing, Y., Wang, R., Xu, J., & Wan, J. (2022). Comparative physiological and metabolomic analyses reveal that Fe 3 O 4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. Journal of Nanobiotechnology, 20, 302. https://doi.org/10.1186/s12951-022-01509-3. (PMID: 10.1186/s12951-022-01509-3)
Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270. https://doi.org/10.1016/j.plantsci.2019.110270. (PMID: 10.1016/j.plantsci.2019.110270)
Contributed Indexing: Keywords: Heavy metals; Metal stress alleviation; Nanoparticles; Plant development; Remediation mechanism; Soil health
Substance Nomenclature: 0 (Metals, Heavy)
0 (Soil Pollutants)
0 (Soil)
Entry Date(s): Date Created: 20251206 Date Completed: 20251206 Latest Revision: 20251206
Update Code: 20251206
DOI: 10.1007/s10653-025-02919-6
PMID: 41351776
Databáze: MEDLINE
Popis
Abstrakt:Although, NPs have potential to improved plant resistance against abiotic stress, increased nutrient usage efficiency, and sustenance of agricultural production. However, reactions of NPs in soil matrices, particularly their movement, perseverance, and biogeochemical reactions in soil-plant system under heavy metals (HMs) were not well understood. Therefore, this review presents the latest research in order to clarify the molecular interactions, beneficial transformations, and detoxification processes of NPs in plants and evaluates their roles in these processes. It further aims to quantify the benefits and risks, and give future directions for NPs design and applications in environmental remediation and agriculture. NPs significantly enhanced agricultural outcomes through mechanisms such as regulating HMs uptake, boosting antioxidant enzyme activity (up to a 60% increase), altering soil properties, and optimizing physiological metabolism. NPs amendments raised crop output by 20-55% while reducing disease and nutrient leaching to 50% and 30%, respectively, and improving the soil's carbon sink by 15%. Meanwhile, green-synthesized nanomaterials offer eco-friendly alternatives in remediation through processes like adsorption, oxidation, coprecipitation, ion-exchange, photocatalysis, and nanophytoremediation, achieving 100% pollutant removal efficiency for elements like hexavalent chromium using iron NPs. However, challenges such as NPs accumulation in food chains, potential toxicity to non-target species, and physiological disruptions necessitate solutions like microbiome co-delivery and stimuli-responsive systems to balance safety and effectiveness. In order to increase the available resources and address the worldwide food safety issue, the use of NPs in agroecosystems might be a crucial step towards sustainable farming. Therefore, the influence of NPs on soil, and plant antioxidant defense systems and oxidative stress activation under HMs should be studied using molecular, physiological, and biochemical techniques. For this purpose, real-time polymerase chain reaction (RT-PCR) analysis, illumina MiSeq sequencing, pyrosequencing analysis, metagenomics, metabolomics, proteomics, and functional assays etc. could be most useful for NPs risk/benefit evaluation.<br /> (© 2025. The Author(s), under exclusive licence to Springer Nature B.V.)
ISSN:1573-2983
DOI:10.1007/s10653-025-02919-6