Drought and record wildfires during the 3-year La Niña: assessing air pollution impacts in Northeastern Mexico.

Saved in:
Bibliographic Details
Title: Drought and record wildfires during the 3-year La Niña: assessing air pollution impacts in Northeastern Mexico.
Authors: Ipiña A; Instituto de Física Rosario, CONICET-UNR, 27 de Febrero, Rosario, 2000, Santa Fe, Argentina. ipina@ifir-conicet.gov.ar., López-Padilla G; Centro de Investigación en Matemáticas, SECIHTI, De Jalisco, Guanajuato, 36023, Guanajuato, México., Zúñiga-Villareal C; Centro de Investigación Científica y de Educación Superior de Ensenada, SECIHTI, Carretera Tijuana-Ensenada, Ensenada, 22860, Baja California, México., Carrillo Ávila JR; Agencia de la Calidad del Aire, Secretaría de Medio Ambiente de Nuevo León, Washington, Monterrey, 64010, Nuevo León, México.
Source: Environmental monitoring and assessment [Environ Monit Assess] 2025 Dec 06; Vol. 198 (1), pp. 15. Date of Electronic Publication: 2025 Dec 06.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
Imprint Name(s): Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
MeSH Terms: Environmental Monitoring* , Air Pollution*/statistics & numerical data , Wildfires*/statistics & numerical data , Droughts*/statistics & numerical data , Air Pollutants*/analysis , El Nino-Southern Oscillation*, Mexico ; Particulate Matter/analysis ; Climate Change
Abstract: The Monterrey Metropolitan Area (MMA) in Northeastern Mexico, already burdened by significant industrial pollution, experienced a severe drought crisis during the 2020-2023 triple-dip La Niña. This prolonged climate anomaly triggered three major fire episodes in the Sierra Madre Oriental (SMO), sharply increasing particulate matter (PM10 and PM2.5) concentrations. To assess the impact of wildfire emissions on urban pollution, this study integrates ground-based air quality and meteorological measurements, satellite-derived data (VIIRS fire radiative power and MODIS aerosol optical depth), drought indicators from the North American Drought Monitor (NADM), and dispersion modeling using Nonparametric Wind Regression (NWR). Fire-attributable contributions increased by up to 53.3 INLINEMATH gm INLINEMATH for PM10 and 12.8 INLINEMATH gm INLINEMATH for PM2.5, frequently exceeding both Mexican and WHO air quality standards. On average, the three wildfires accounted for relative increases of 110% in PM10 and 49% in PM2.5 compared to non-fire conditions. These increases were linked to wind-driven smoke transport from the SMO to the MMA, demonstrating that three megafires substantially degraded urban air quality during a period of extreme drought. As climate change is expected to increase the frequency of multi-year ENSO episodes, thereby prolonging droughts and intensifying wildfire occurrence, our findings underscore the urgent need to incorporate biomass burning aerosol emissions into air quality management strategies and health impact assessments in other regions experiencing similar conditions.
(© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Beig, G., Anand, V., Korhale, N., Sobhana, S., Harshitha, K., & Kripalani, R. (2024). Triple dip La-Nina, unorthodox circulation and unusual spin in air quality of India. Science of The Total Environment, 920, Article 170963. https://doi.org/10.1016/j.scitotenv.2024.170963. (PMID: 10.1016/j.scitotenv.2024.170963)
Bo, M., Mercalli, L., Pognant, F., Berro, D. C., & Clerico, M. (2020). Urban air pollution, climate change and wildfires: The case study of an extended forest fire episode in northern Italy favoured by drought and warm weather conditions. Energy Reports,6, 781–786. https://doi.org/10.1016/j.egyr.2019.11.002 . (The 6th International Conference on Energy and Environment Research - Energy and environment: challenges towards circular economy).
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Brad Marston, J., Moritz, M. A., Colin Prentice, I., Roos, C. I., Scott, A. C., & Pyne, S. J. (2009). Fire in the earth system. Science, 324(5926), 481–484. https://doi.org/10.1126/science.1163886.
Bravo, A., Sosa, E., Sánchez, A., Jaimes, P., & Saavedra, R. (2002). Impact of wildfires on the air quality of Mexico City, 1992–1999. Environmental Pollution, 117(2), 243–253. https://doi.org/10.1016/s0269-7491(01)00277-9. (PMID: 10.1016/s0269-7491(01)00277-9)
Cabrera, S., Ipiña, A., Damiani, A., Cordero, R. R., & Piacentini, R. D. (2012). Uv index values and trends in Santiago, Chile (33.5[Formula: see text]s) based on ground and satellite data. Journal of Photochemistry and Photobiology B: Biology, 115, 73–84. https://doi.org/10.1016/j.jphotobiol.2012.06.013 https://www.sciencedirect.com/science/article/pii/S1011134412001388.
Carmona, J. M., Vanoye, A. Y., Lozano, F., & Mendoza, A. (2015). Dust emission modeling for the western border region of Mexico and the USA. Environmental Earth Sciences, 74(2), 1687–1697. https://doi.org/10.1007/s12665-015-4173-5.
Carrasco-Escaff, T., Garreaud, R., Bozkurt, D., Jacques-Coper, M., & Pauchard, A. (2024). The key role of extreme weather and climate change in the occurrence of exceptional fire seasons in south-central Chile. Weather and Climate Extremes, 45,. https://doi.org/10.1016/j.wace.2024.100716.
Cerano-Paredes, J., Iniguez, J. M., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-Martínez, R., Esquivel-Arriaga, G., Franco-Ramos, O., & Rodríguez-Trejo, D. A. (2021). Effects of climate on historical fire regimes (1451–2013) in Pinus hartwegii forests of Cofre de Perote National Park, Veracruz. Mexico. Dendrochronologia, 65, Article 125784. https://doi.org/10.1016/j.dendro.2020.125784.
Chen, H.-C., Tseng, Y.-H., Huang, J.-H., & Juang, P.-H. (2025). Understanding the driving mechanisms behind triple-dip La Niñas: Insights from the prediction perspective. Npj Climate and Atmospheric Science, 8(143), 1. https://doi.org/10.1038/s41612-025-01004-0. (PMID: 10.1038/s41612-025-01004-0)
CMM. (2019). Centro mario molina, propuestas para el desarrollo sustentable de una ciudad mexicana: Estudio del Área metropolitana de monterrey. Retrieved from http://aire.nl.gob.mx/docs/reportes/Propuestas_de_sustentabilidad_Monterrey.pdf.
CONAFOR. (2023). Comisión nacional forestal. Retrieved from https://www.gob.mx/conafor.
CONAGUA. (2025). Estaciones meteorológicas automáticas (emas). Retrieved from https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s.
Cordero, R. R., Feron, S., Damiani, A., Carrasco, J., Karas, C., Wang, C., & Beaulieu, A. (2024). Extreme fire weather in Chile driven by climate change and El Niño-southern oscillation (ENSO). Scientific Reports, 14(1), 1974. https://doi.org/10.1038/s41598-024-52481-x. (PMID: 10.1038/s41598-024-52481-x)
CPC, N. (2025). Oceanic niño index (oni). Retrieved from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.
DAAC, L. (2023). Level 1 and atmosphere archive and distribution system distributed active archive center. Retrieved from https://ladsweb.modaps.eosdis.nasa.gov/search/.
da Silva Júnior, L. A. S., Delgado, R. C., Pereira, M. G., Teodoro, P. E., & da Silva Junior, C. A. (2019). Fire dynamics in extreme climatic events in western Amazon. Environmental Development, 32, Article 100450. https://doi.org/10.1016/j.envdev.2019.06.005. (PMID: 10.1016/j.envdev.2019.06.005)
de la Barrera, F., Barraza, F., Favier, P., Ruiz, V., & Quense, J. (2018). Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Science of The Total Environment, 637–638, 1526–1536. https://doi.org/10.1016/j.scitotenv.2018.05.119. (PMID: 10.1016/j.scitotenv.2018.05.119)
earth.org (2024). Unprecedented scale: Exploring the largest wildfires in us history. Retrieved from https://earth.org/worst-wildfires-in-us-history/.
Fadadu, R. P., Solomon, G., & Balmes, J. R. (2024). Wildfires and human health. JAMA, 332(12), 1011. https://doi.org/10.1001/jama.2024.13600. (PMID: 10.1001/jama.2024.13600)
Fang, K., Yao, Q., Guo, Z., Zheng, B., Du, J., Qi, F., Yan, P., Li, J., Ou, T., Liu, J., He, M., & Trouet, V. (2021). Enso modulates wildfire activity in China. Nature Communications, 12(1), 1764. https://doi.org/10.1038/s41467-021-21988-6. (PMID: 10.1038/s41467-021-21988-6)
Farfán, M., Dominguez, C., Espinoza, A., Jaramillo, A., Alcántara, C., Maldonado, V., Tovar, I., & Flamenco, A. (2021). Forest fire probability under ENSO conditions in a semi-arid region: A case study in Guanajuato. Environmental Monitoring and Assessment, 193(10), 684. https://doi.org/10.1007/s10661-021-09494-0. (PMID: 10.1007/s10661-021-09494-0)
Galván, L., & Magaña, V. (2020). Forest fires in Mexico: An approach to estimate fire probabilities. International Journal of Wildland Fire, 29(10), 753–763. https://doi.org/10.1071/WF19057. (PMID: 10.1071/WF19057)
Gasca-Sanchez, F. M., Santuario-Facio, S. K., Ortiz-López, R., Rojas-Martinez, A., Mejía-Velázquez, G. M., Garza-Perez, E. M., Hernández-Hernández, J. A., del Carmen López-Sánchez, R., Cardona-Huerta, S., & Santos-Guzman, J. (2021). Spatial interaction between breast cancer and environmental pollution in the Monterrey Metropolitan Area. Heliyon, 7(9), Article e07915. https://doi.org/10.1016/j.heliyon.2021.e07915 . Retrieved from https://www.sciencedirect.com/science/article/pii/S2405844021020181 .
Geng, T., Jia, F., Cai, W., Wu, L., Gan, B., Jing, Z., Li, S., & McPhaden, M. J. (2023). Increased occurrences of consecutive La Niña events under global warming. Nature, 619, 774–781. https://doi.org/10.1038/s41586-023-06236-9. (PMID: 10.1038/s41586-023-06236-9)
González, L. T., Longoria-Rodríguez, F. E., Sánchez-Domínguez, M., Leyva-Porras, C., Acuña-Askar, K., Kharissov, B. I., Arizpe-Zapata, A., & Alfaro-Barbosa, J. M. (2018). Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. Journal of Environmental Sciences, 74, 32–49. https://doi.org/10.1016/j.jes.2018.02.002 . Retrieved from https://www.sciencedirect.com/science/article/pii/S1001074217331546 .
González-Santiago, O., Badillo-Castañeda, C. T., Kahl, J. D., Ramírez-Lara, E., & Balderas-Renteria, I. (2011). Temporal analysis of pm10 in Metropolitan Monterrey, México. Journal of the Air & Waste Management Association, 61(5), 573–579. https://doi.org/10.3155/1047-3289.61.5.573. (PMID: 10.3155/1047-3289.61.5.573)
Graham, A. M., Pringle, K. J., Pope, R. J., Arnold, S. R., Conibear, L. A., Burns, H., Rigby, R., Borchers-Arriagada, N., Butt, E. W., Kiely, L., Reddington, C., Spracklen, D. V., Woodhouse, M. T., Knote, C., & McQuaid, J. B. (2021). Impact of the 2019/2020 Australian megafires on air quality and health. GeoHealth,5(10), e2021GH000454. https://doi.org/10.1029/2021gh000454.
Grosvenor, M. J., Ardiyani, V., Wooster, M. J., Gillott, S., Green, D. C., Lestari, P., & Suri, W. (2024). Catastrophic impact of extreme 2019 Indonesian peatland fires on urban air quality and health. Communications Earth & Environment, 5(1), 649. https://doi.org/10.1038/s43247-024-01813-w. (PMID: 10.1038/s43247-024-01813-w)
Henry, R., Norris, G. A., Vedantham, R., & Turner, J. R. (2009). Source region identification using kernel smoothing. Environmental Science & Technology, 43(11), 4090–4097. https://doi.org/10.1021/es8011723. (PMID: 10.1021/es8011723)
Hu, Y., Yue, X., & Tian, C. (2025). Impacts of El Niño-southern oscillation on global fire pm2.5 during 2000–2023. Atmospheric and Oceanic Science Letters,18(3), 100597. https://doi.org/10.1016/j.aosl.2025.100597.
IPCC. (2023). North America. In Climate change 2022 - impacts, adaptation and vulnerability: Working group II contribution to the sixth assessment report of the intergovernmental panel on climate change (pp. 1929–2042). Cambridge University Press.
Ipiña, A., López-Padilla, G., Retama, A., Piacentini, R. D., & Madronich, S. (2021). Ultraviolet radiation environment of a tropical megacity in transition: Mexico city 2000–2019. Environmental Science & Technology, 55(16), 10946–10956. https://doi.org/10.1021/acs.est.0c08515 . (PMID: 34343426). (PMID: 10.1021/acs.est.0c08515)
Iwakiri, T., Imada, Y., Takaya, Y., Kataoka, T., Tatebe, H., & Watanabe, M. (2023). Triple-dip La Niña in 2020–23: North pacific atmosphere drives 2nd year La Niña. Geophysical Research Letters,50(22), e2023GL105763. https://doi.org/10.1029/2023gl105763.
Jacobson, L. D. S. V., Hacon, S. D. S., Castro, H. A. D., Ignotti, E., Artaxo, P., Saldiva, P. H. N., & de Leon, A. C. M. P. (2014). Acute effects of particulate matter and black carbon from seasonal fires on peak expiratory flow of schoolchildren in the Brazilian Amazon. PLoS ONE, 9(8), Article e104177. https://doi.org/10.1371/journal.pone.0104177. (PMID: 10.1371/journal.pone.0104177)
Jeong, H., Park, H.-S., Chowdary, J. S., & Xie, S.-P. (2023). Triple-dip La Niña contributes to Pakistan flooding and southern China drought in summer 2022. Bulletin of the American Meteorological Society, 104(9), E1570–E1586. https://doi.org/10.1175/bams-d-23-0002.1. (PMID: 10.1175/bams-d-23-0002.1)
Ji, D., Gao, W., Maenhaut, W., He, J., Wang, Z., Li, J., Du, W., Wang, L., Sun, Y., Xin, J., Hu, B., & Wang, Y. (2019). Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: Insights gained from long-term measurement. Atmospheric Chemistry and Physics, 19(13), 8569–8590. https://doi.org/10.5194/acp-19-8569-2019. (PMID: 10.5194/acp-19-8569-2019)
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and regional trends and drivers of fire under climate change. Reviews of Geophysics,60(3), e2020RG000726. https://doi.org/10.1029/2020rg000726.
Jones, N. (2022). Rare -triple- La Niña climate event looks likely-what does the future hold? Nature, 607(21), 7917. https://doi.org/10.1038/d41586-022-01668-1. (PMID: 10.1038/d41586-022-01668-1)
Keeley, J. E., & Syphard, A. D. (2021). Large California wildfires: 2020 fires in historical context. Fire Ecology, 17(1), 2. https://doi.org/10.1186/s42408-021-00110-7. (PMID: 10.1186/s42408-021-00110-7)
Keywood, M., Cope, M., Meyer, C. M., Iinuma, Y., & Emmerson, K. (2015). When smoke comes to town: The impact of biomass burning smoke on air quality. Atmospheric Environment,121, 13–21. https://doi.org/10.1016/j.atmosenv.2015.03.050 . Retrieved from https://www.sciencedirect.com/science/article/pii/S1352231015002745 (Interdisciplinary Research Aspects of Open Biomass Burning and its Impact on the Atmosphere).
Kobziar, L. N. (2014). Fire on Earth: An introduction. 2014. By A.C. Scott, D.M.J.S. Bowman, W.J. Bond, S. J. Pyne, and M.E. Alexander. Wiley Blackwell, Hoboken, New Jersey, USA. 434 pages. Paperback, US89.95; hardcover, US149.95. ISBN 978-1-119-95356-2. Fire Ecology, 10(1), 88-91. https://doi.org/10.4996/fireecology.1001088.
Li, X., Hu, Z., McPhaden, M. J., Zhu, C., & Liu, Y. (2023). Triple-dip La Niñas in 1998–2001 and 2020–2023: Impact of mean state changes. Journal of Geophysical Research Atmospheres,128(17), e2023JD038843. https://doi.org/10.1029/2023jd038843.
Loría-Salazar, S. M., Sayer, A. M., Barnes, J., Huang, J., Flynn, C., Lareau, N., Lee, J., Lyapustin, A., Redemann, J., Welton, E. J., Wilkins, J. L., & Holmes, H. A. (2021). Evaluation of novel NASA MODerate resolution imaging spectroradiometer and visible infrared imaging radiometer suite aerosol products and assessment of smoke height boundary layer ratio during extreme smoke events in the western USA. Journal of Geophysical Research Atmospheres,126(11), e2020JD034180. https://doi.org/10.1029/2020JD034180 . Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JD034180.
Maji, K. J., Ford, B., Li, Z., Hu, Y., Hu, L., Langer, C. E., Hawkinson, C., Paladugu, S., Moraga-McHaley, S., Woods, B., Vansickle, M., Uejio, C. K., Maichak, C., Sablan, O., Magzamen, S., Pierce, J. R., & Russell, A. G. (2024). Impact of the 2022 new Mexico, US wildfires on air quality and health. Science of The Total Environment, 946, Article 174197. https://doi.org/10.1016/j.scitotenv.2024.174197. (PMID: 10.1016/j.scitotenv.2024.174197)
Martinez, M. A., Caballero, P., Carrillo, O., Mendoza, A., & Mejia, G. M. (2012). Chemical characterization and factor analysis of pm2.5 in two sites of Monterrey, Mexico. Journal of the Air & Waste Management Association,62(7), 817–827. https://doi.org/10.1080/10962247.2012.681421.
Martínez-Cinco, M., Santos-Guzmán, J., & Mejía-Velázquez, G. (2016). Source apportionment of PM2.5 for supporting control strategies in the Monterrey Metropolitan Area, Mexico. Journal of the Air & Waste Management Association, 66, 631–642. (PMID: 10.1080/10962247.2016.1159259)
Martínez Morales, S., Cerón Bretón, J. G., Carbajal, N., Cerón Bretón, R. M., Lara Severino, R., Kahl, J. D., Ávila, C., Rafael, J., Lozada, C., Eduardo, S., Espinosa Guzmán, A., Pech Pech, I. E., Garcia Martinez, R., Robles Heredia, J. C., Hernández López, G., Solís Canul, J. A., & Uc Chi, M. P. (2023). Pm2.5-bound trace metals in an urban area of northern Mexico during the COVID-19 pandemic: Characterization, sources, and health risk. Air Quality, Atmosphere & Health,16(9), 1789–1808. https://doi.org/10.1007/s11869-023-01372-7.
Mendoza, A., Garcia, M. R., Vela, P., Lozano, D. F., & Allen, D. (2005). Trace gases and particulate matter emissions from wildfires and agricultural burning in northeastern Mexico during the 2000 fire season. Journal of the Air & Waste Management Association, 55(12), 1797–1808. https://doi.org/10.1080/10473289.2005.10464778. (PMID: 10.1080/10473289.2005.10464778)
MODIS Land Rapid Response Team, NASA GSFC (2021). Wildfires in Coahuila and Nuevo León, Mexico. Retrieved from https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2021-03-30.
NASA FIRMS (2023). Fire information for resource management system (firms): VIIRS active fire data. https://doi.org/10.5067/FIRMS/VIIRS/VNP14IMG_NRT.001 . NASA Earth Science Data and Information System (ESDIS). (Accessed: 2025–09-29).
Neger, C., León-Cruz, J. F., Galicia Sarmiento, L., & Manzo-Delgado, L. D. L. (2022). Dinámica espaciotemporal, causas y efectos de los megaincendios forestales en México. Madera y Bosques,28(2), e2822453. https://doi.org/10.21829/myb.2022.2822453.
NOAA STAR (2021). JPSS VIIRS near real-time fire radiative power (FRP) product. https://www.star.nesdis.noaa.gov/jpss/ . NOAA Center for Satellite Applications and Research (STAR). (Accessed: 2025–09-29).
Padilla y Sánchez, R. J. (2019). Las estructuras de la curvatura de monterrey, estados de coahuila, nuevo león, zacatecas y san luis potosí. Revista Mexicana de Ciencias Geológicas, 6(1), 1–20. https://rmcg.geociencias.unam.mx/index.php/rmcg/article/view/1343.
Petit, J.-E., Favez, O., Albinet, A., & Canonaco, F. (2017). A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses. Environmental Modelling & Software, 88, 183–187. https://doi.org/10.1016/j.envsoft.2016.11.022. (PMID: 10.1016/j.envsoft.2016.11.022)
Pompa-García, M., Camarero, J. J., Rodríguez-Trejo, D. A., & Vega-Nieva, D. J. (2018). Drought and spatiotemporal variability of forest fires across Mexico. Chinese Geographical Science, 28(1), 25–37. https://doi.org/10.1007/s11769-017-0928-0. (PMID: 10.1007/s11769-017-0928-0)
Richardson, D., Black, A. S., Irving, D., Matear, R. J., Monselesan, D. P., Risbey, J. S., Squire, D. T., & Tozer, C. R. (2022). Global increase in wildfire potential from compound fire weather and drought. Npj Climate and Atmospheric Science, 5(1), 23. https://doi.org/10.1038/s41612-022-00248-4. (PMID: 10.1038/s41612-022-00248-4)
Riojas-Rodríguez, H., da Silva, A. S., Texcalac-Sangrador, J. L., & Moreno-Banda, G. L. (2016). Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Revista Panamericana de Salud Publica, 40(3), 150–159.
Rios, B., Díaz-Esteban, Y., & Raga, G. B. (2023). Smoke emissions from biomass burning in central Mexico and their impact on air quality in Mexico city: May 2019 case study. Science of The Total Environment, 904, Article 166912. https://doi.org/10.1016/j.scitotenv.2023.166912 https://www.sciencedirect.com/science/article/pii/S0048969723055377 .
Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The new VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96. https://doi.org/10.1016/j.rse.2013.12.008. (PMID: 10.1016/j.rse.2013.12.008)
Schweizer, D., Cisneros, R., & Buhler, M. (2019). Coarse and fine particulate matter components of wildland fire smoke at devils postpile national monument, California, USA. Aerosol and Air Quality Research, 19(7), 1463–1470. https://doi.org/10.4209/aaqr.2019.04.0219. (PMID: 10.4209/aaqr.2019.04.0219)
Servicios de Agua y Drenaje de Monterrey (2022). Estado hace frente a la sequía con suficiente equipo material y humano. https://www.sadm.gob.mx/SADM/Noticia.jsp?id_html=Estado_frente_sequia.
Shi, L., Ding, R., Hu, S., Li, X., & Li, J. (2023). Extratropical impacts on the 2020–2023 triple-dip La Niña event. Atmospheric Research, 294, Article 106937. https://doi.org/10.1016/j.atmosres.2023.106937. (PMID: 10.1016/j.atmosres.2023.106937)
Silva-Quiroz, R., Rivera, A. L., Ordoñez, P., Gay-Garcia, C., & Frank, A. (2019). Atmospheric blockages as trigger of environmental contingencies in Mexico City. Heliyon, 5(7), Article e02099. https://doi.org/10.1016/j.heliyon.2019.e02099. (PMID: 10.1016/j.heliyon.2019.e02099)
Turco, M., Abatzoglou, J. T., Herrera, S., Zhuang, Y., Jerez, S., Lucas, D. D., AghaKouchak, A., & Cvijanovic, I. (2023). Anthropogenic climate change impacts exacerbate summer forest fires in California. Proceedings of the National Academy of Sciences, 120(25), Article e2213815120. https://doi.org/10.1073/pnas.2213815120. (PMID: 10.1073/pnas.2213815120)
Velasco Herrera, G. (2016). Mexican forest fires and their decadal variations. Advances in Space Research, 58(10), 2104–2115. https://doi.org/10.1016/j.asr.2016.08.030 . Retrieved from https://www.sciencedirect.com/science/article/pii/S0273117716304835 . (Space and Geophysical Research related to Latin America - Part 2).
Yin, J., He, B., Fan, C., Chen, R., Zhang, H., & Zhang, Y. (2024). Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China. Agricultural and Forest Meteorology, 346, Article 109893. https://doi.org/10.1016/j.agrformet.2024.109893. (PMID: 10.1016/j.agrformet.2024.109893)
Yocom, L. L., Fulé, P. Z., Brown, P. M., Cerano, J., Villanueva-Díaz, J., Falk, D. A., & Cornejo-Oviedo, E. (2010). El Niño-southern oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology, 91(6), 1660–1671. https://doi.org/10.1890/09-0845.1. (PMID: 10.1890/09-0845.1)
Yokelson, R. J., Urbanski, S. P., Atlas, E. L., Toohey, D. W., Alvarado, E. C., Crounse, J. D., Wennberg, P. O., Fisher, M. E., Wold, C. E., Campos, T. L., Adachi, K., Buseck, P. R., & Hao, W. M. (2007). Emissions from forest fires near Mexico City. Atmospheric Chemistry and Physics, 7(21), 5569–5584. https://doi.org/10.5194/acp-7-5569-2007. (PMID: 10.5194/acp-7-5569-2007)
Zhang, D., Wang, W., Xi, Y., Bi, J., Hang, Y., Zhu, Q., Pu, Q., Chang, H., & Liu, Y. (2023). Wildland fires worsened population exposure to pm2.5 pollution in the contiguous United States. Environmental Science & Technology,57(48), 19990–19998. https://doi.org/10.1021/acs.est.3c05143.
Zhang, L., Yu, X., Zhou, T., Zhang, W., Hu, S., & Clark, R. (2023). Understanding and attribution of extreme heat and drought events in 2022: Current situation and future challenges. Advances in Atmospheric Sciences, 40(11), 1941–1951. https://doi.org/10.1007/s00376-023-3171-x. (PMID: 10.1007/s00376-023-3171-x)
Zhang, Y., Xu, R., Huang, W., Ye, T., Yu, P., Yu, W., Wu, Y., Liu, Y., Yang, Z., Wen, B., Ju, K., Song, J., Abramson, M. J., Johnson, A., Capon, A., Jalaludin, B., Green, D., Lavigne, E., Johnston, F. H., & Li, S. (2025). Respiratory risks from wildfire-specific pm2.5 across multiple countries and territories. Nature Sustainability,8(5), 474–484. https://doi.org/10.1038/s41893-025-01533-9.
Zheng, F., Wu, B., Wang, L., Peng, J., Yao, Y., Zong, H., Bao, Q., Ma, J., Hu, S., Ren, H., Cao, T., Lin, R., Fang, X., Tao, L., Zhou, T., & Zhu, J. (2023). Can Eurasia experience a cold winter under a third-year La Niña in 2022/23? Advances in Atmospheric Sciences, 40(4), 541–548. https://doi.org/10.1007/s00376-022-2331-8.
Contributed Indexing: Keywords: Extreme drought; La Niña; PM10; PM2.5; Wildfires
Substance Nomenclature: 0 (Air Pollutants)
0 (Particulate Matter)
Entry Date(s): Date Created: 20251206 Date Completed: 20251206 Latest Revision: 20251206
Update Code: 20251206
DOI: 10.1007/s10661-025-14833-6
PMID: 41351638
Database: MEDLINE
Description
Abstract:The Monterrey Metropolitan Area (MMA) in Northeastern Mexico, already burdened by significant industrial pollution, experienced a severe drought crisis during the 2020-2023 triple-dip La Niña. This prolonged climate anomaly triggered three major fire episodes in the Sierra Madre Oriental (SMO), sharply increasing particulate matter (PM10 and PM2.5) concentrations. To assess the impact of wildfire emissions on urban pollution, this study integrates ground-based air quality and meteorological measurements, satellite-derived data (VIIRS fire radiative power and MODIS aerosol optical depth), drought indicators from the North American Drought Monitor (NADM), and dispersion modeling using Nonparametric Wind Regression (NWR). Fire-attributable contributions increased by up to 53.3 INLINEMATH gm INLINEMATH for PM10 and 12.8 INLINEMATH gm INLINEMATH for PM2.5, frequently exceeding both Mexican and WHO air quality standards. On average, the three wildfires accounted for relative increases of 110% in PM10 and 49% in PM2.5 compared to non-fire conditions. These increases were linked to wind-driven smoke transport from the SMO to the MMA, demonstrating that three megafires substantially degraded urban air quality during a period of extreme drought. As climate change is expected to increase the frequency of multi-year ENSO episodes, thereby prolonging droughts and intensifying wildfire occurrence, our findings underscore the urgent need to incorporate biomass burning aerosol emissions into air quality management strategies and health impact assessments in other regions experiencing similar conditions.<br /> (© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
ISSN:1573-2959
DOI:10.1007/s10661-025-14833-6