Climate change refugia in Canadian prairies: assessing range shifts and identifying breeding habitats for grassland songbirds.
Gespeichert in:
| Titel: | Climate change refugia in Canadian prairies: assessing range shifts and identifying breeding habitats for grassland songbirds. |
|---|---|
| Autoren: | Shrestha R; Science, Knowledge and Innovation Unit, WWF-Canada, 410 Adelaide St W, Suite 400, Toronto, ON, M5V 1S8, Canada. rshrestha@wwfcanada.org., Arabian J; Geospatial Competency Centre, City of Toronto, Toronto, ON, M3B 1V5, Canada., Martin C; Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland., Merrit W; Pachama, Vancouver, BC, V5V 1M8, Canada., Giles E; Science, Knowledge and Innovation Unit, WWF-Canada, 410 Adelaide St W, Suite 400, Toronto, ON, M5V 1S8, Canada., Snider J; Science, Knowledge and Innovation Unit, WWF-Canada, 410 Adelaide St W, Suite 400, Toronto, ON, M5V 1S8, Canada. |
| Quelle: | Environmental monitoring and assessment [Environ Monit Assess] 2025 Dec 05; Vol. 198 (1), pp. 11. Date of Electronic Publication: 2025 Dec 05. |
| Publikationsart: | Journal Article |
| Sprache: | English |
| Info zur Zeitschrift: | Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE |
| Imprint Name(s): | Publication: 1998- : Dordrecht : Springer Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981- |
| MeSH-Schlagworte: | Climate Change* , Grassland* , Ecosystem* , Songbirds*/physiology , Refugium* , Environmental Monitoring*, Animals ; Canada ; Conservation of Natural Resources ; Breeding ; Animal Distribution |
| Abstract: | The identification of climate change refugia is fundamental for climate-smart conservation planning, especially in highly altered landscapes, such as temperate grasslands. Our study aimed to identify breeding refugia for three focal grassland birds: Baird's sparrow (Centronyx bairdii), Sprague's pipit (Anthus spragueii), and thick-billed longspur (Rhynchophanes mccownii) across the Canadian prairies. We used species distribution models to identify breeding refugia within the climatically suitable range for two time periods (2050 and 2080) under two of the most likely climatic scenarios ("intermediate scenario" RCP 4.5 and "worst-case scenario" RCP 8.5). In doing so, we demonstrate the importance of incorporating species-specific dispersal ability and projected shifts in grassland habitats in the analyses. Our study predicts a northward shift in the breeding ranges of all three bird species under both climate scenarios, with almost 100% loss of their current breeding habitat. However, all species are expected to gain bioclimatic space outside of their current range under RCP 4.5 in 2050 and 2080. Further increases in emissions under the RCP 8.5 scenario will likely cause Baird's sparrow to lose bioclimatic space both in 2050 and 2080, and the same is true for the other two species only in 2080. Approximately 80% of currently suitable habitats for the focal species are located outside protected areas. As the climate warms, almost 100% of future breeding refugia for all birds are likely to reside outside protected areas in all climate change scenarios. Our study provides a framework for climate-integrated conservation planning for the wide-ranging migratory species. (© 2025. The Author(s).) |
| References: | Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. (PMID: 10.1109/TAC.1974.1100705) Alonso-Crespo, I. M., & Hernández-Agüero, J. A. (2023). Shedding light on trophic interactions: A field experiment on the effect of human population between latitudes on herbivory and predation patterns. Ecology and Evolution, 13, Article e10449. https://doi.org/10.1002/ece3.10449. (PMID: 10.1002/ece3.10449) Anderson, R. C. (2006). Evolution and origin of the central grassland of North America: Climate, fire, and mammalian grazers. Journal of the Torrey Botanical Society, 133, 626–647. https://doi.org/10.3159/1095-5674(2006)133[626:EAOOTC]2.0.CO;2. (PMID: 10.3159/1095-5674(2006)133[626:EAOOTC]2.0.CO;2) Araújo, M. B., & Pearson, R. G. (2005). Equilibrium of species’ distributions with climate. Ecography, 28, 693–695. https://doi.org/10.1111/j.2005.0906-7590.04253.x. (PMID: 10.1111/j.2005.0906-7590.04253.x) Ashcroft, M. B. (2010). Identifying refugia from climate change. Journal of Biogeography, 37, 1407–1413. https://doi.org/10.1111/j.1365-2699.2010.02300.x. (PMID: 10.1111/j.1365-2699.2010.02300.x) Barber, R. A., Ball, S. G., Morris, R. K. A., & Gilbert, F. (2022). Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Diversity and Distributions, 28, 128–141. https://doi.org/10.1111/ddi.13442. (PMID: 10.1111/ddi.13442) Bateman, B. L., Wilsey, C., Taylor, L., Wu, J., LeBaron, G. S., & Langham, G. (2020). North American birds require mitigation and adaptation to reduce vulnerability to climate change. Conservation Science and Practice. https://doi.org/10.1111/csp2.242. (PMID: 10.1111/csp2.242) Bernath-Plaisted, J. S., Correll, M. D., Somershoe, S. G., Dwyer, A. M., Bankert, A., Beh, A., Berlanga, H., Boyle, W. A., Cruz-Romo, J. L., George, T. L., Herkert, J., Koper, N., Macías-Duarte, A., Panjabi, A. O., Ramírez-Flores, O. M., Robinson, B., Ruvalcaba-Ortega, I., Sibbing, J., Strasser, E. H., & VerCauteren, T. (2023a). Review of conservation challenges and possible solutions for grassland birds of the North American Great Plains. Rangeland Ecology & Management, 90, 165–185. https://doi.org/10.1016/j.rama.2023.07.002. (PMID: 10.1016/j.rama.2023.07.002) Bernath-Plaisted, J. S., Ribic, C. A., Hills, W. B., Townsend, P. A., & Zuckerberg, B. (2023b). Microclimate complexity in temperate grasslands: Implications for conservation and management under climate change. Environmental Research Letters. https://doi.org/10.1088/1748-9326/acd4d3. (PMID: 10.1088/1748-9326/acd4d3) Bird, J. P. (2020). Generation lengths of the world’s birds and their implications for extinction risk. Conservation Biology. https://doi.org/10.1111/cobi.13486. (PMID: 10.1111/cobi.13486) Brambilla, M., Rubolini, D., Appukuttan, O., Calvi, G., Karger, D. N., Kmecl, P., Mihelič, T., Sattler, T., Seaman, B., Teufelbauer, N., Wahl, J., & Celada, C. (2022). Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions. Global Change Biology. https://doi.org/10.1111/gcb.16187. (PMID: 10.1111/gcb.16187) Birds Canada (2018). Data accessed from NatureCounts, a node of the Avian Knowledge Network, Birds Canada. Available: https://www.naturecounts.ca/ . Accessed 7, Aug 2025. Carroll, C., & Noss, R. F. (2020). Rewilding in the face of climate change. Conservation Biology, 00(1), 1. https://doi.org/10.1111/cobi.13531. (PMID: 10.1111/cobi.13531) Carroll, C., Roberts, D. R., Michalak, J. L., Lawler, J. J., Nielsen, S. E., Stralberg, D., Hamann, A., Mcrae, B. H., & Wang, T. (2017). Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Global Change Biology, 23, 4508–4520. https://doi.org/10.1111/gcb.13679. (PMID: 10.1111/gcb.13679) Convention on Biological Diversity. (2021). First draft of the post-2020 global biodiversity framework. Retrieved from: https://www.unep.org/resources/publication/1st-draft-post-2020-global-biodiversity-framework. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 1979(333), 1024–1026. https://doi.org/10.1126/science.1206432. (PMID: 10.1126/science.1206432) COSEWIC. (2010). COSEWIC assessment and status report on the Sprague’s Pipit Anthus spragueii in Canada. Committee on the Status of Endangered Wildlife in Canada. COSEWIC. (2012). COSEWIC assessment and status report on the Baird’s sparrow Ammodramus bairdii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. COSEWIC. (2016). COSEWIC assessment and status report on the McCown’s longspur Rhynchophanes mccownii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. Davidson, S.C., Bohrer, G., Gurarie, E., LaPoint, S., Mahoney, P.J., Boelman, N.T., Eitel, J.U.H., Prugh, L.R., Vierling, L.A., Jennewein, J., Grier, E., Couriot, O., Kelly, A.P., Meddens, A.J.H., Oliver, R.Y., Kays, R., Wikelski, M., Aarvak, T., Ackerman, J.T., ..., Hebblewhite, M. (2020). Ecological insights from three decades of animal movement tracking across a changing Arctic. Science, 1979(370), 712–715. https://doi.org/10.1126/science.abb7080. Davis, S. K. (2004). Area sensitivity in grassland passerines: Effects of patch size, patch shape, and vegetation structure on bird abundance and occurrence in southern Saskatchewan. Auk, 121, 1130–1145. https://doi.org/10.2307/4090481. (PMID: 10.2307/4090481) Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 1979(341), 486–492. https://doi.org/10.1126/science.1237123. (PMID: 10.1126/science.1237123) ECCC & BC (2024). The state of Canada’s birds. Data accessed from NatureCounts, Birds Canada. https://doi.org/10.71842/jqn6-w07. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x. (PMID: 10.1111/j.1472-4642.2010.00725.x) Elsen, P. R., Monahan, W. B., Dougherty, E. R., & Merenlender, A. M. (2020). Keeping pace with climate change in global terrestrial protected areas. Science Advances, 6(25), Article eaay0814. https://doi.org/10.1126/sciadv.aay0814. (PMID: 10.1126/sciadv.aay0814) Environment and Climate Change Canada. (2021). Canadian protected and conserved areas database. Retrieved from https://www.canada.ca/en/environment-climate-change/services/nationalwildlife-areas/protected-conserved-areas-database.html. Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086. (PMID: 10.1002/joc.5086) Fronzek, S., Carter, T. R., & Luoto, M. (2011). Evaluating sources of uncertainty in modelling the impact of probabilistic climate scenarios on species distributions. Climatic Change, 111, 177–197. https://doi.org/10.1007/s10584-011-0137-3. (PMID: 10.1007/s10584-011-0137-3) Gahbauer, M. A., Parker, S. R., Wu, J. X., Harpur, C., Bateman, B. L., Whitaker, D. M., Tate, D. P., Taylor, L., & Lepage, D. (2022). Projected changes in bird assemblages due to climate change in a Canadian system of protected areas. PLoS One. https://doi.org/10.1371/journal.pone.0262116. (PMID: 10.1371/journal.pone.0262116) Gauthier, D. A., & Wiken, E. B. (2003). Monitoring the conservation of grassland habitats, Prairie Ecozone, Canada. Environmental Monitoring and Assessment, 88, 343–364. https://doi.org/10.1023/A:1025585527169. (PMID: 10.1023/A:1025585527169) Government of Canada. (2021). Budget 2021: A recovery plan for jobs, growth, and resilience (pp. 149–150). Retrieved from: https://www.canada.ca/en/department-finance/news/2021/04/budget-2021-a-recovery-plan-for-jobs-growth-and-resilience.html. Grand, J., Wilsey, C., Wu, J., & Michel, N. (2019). The future of North American grassland birds: Incorporating persistent and emergent threats into full annual cycle conservation priorities. Conservation Science and Practice, 1, Article e20. https://doi.org/10.1111/csp2.20. (PMID: 10.1111/csp2.20) Groves, C. R., Game, E. T., Anderson, M. G., Cross, M., Enquist, C., Ferdaña, Z., Girvetz, E., Gondor, A., Hall, K. R., Higgins, J., Marshall, R., Popper, K., Schill, S., & Shafer, S. L. (2012). Incorporating climate change into systematic conservation planning. Biodiversity and Conservation, 21, 1651–1671. https://doi.org/10.1007/s10531-012-0269-3. (PMID: 10.1007/s10531-012-0269-3) Hamann, A., & Wang, T. (2006). Potential effects of climate change on ecosystem. Ecological Society of America, 87, 2773–2786. Hébert, R., Lovejoy, S., & Tremblay, B. (2020). An observation-based scaling model for climate sensitivity estimates and global projections to 2100. Climate Dynamics. https://doi.org/10.1007/s00382-020-05521-x. (PMID: 10.1007/s00382-020-05521-x) Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2005). Confronting a biome crisis: Global disparities of habitat loss and protection. Ecology Letters, 8, 23–29. https://doi.org/10.1111/j.1461-0248.2004.00686.x. (PMID: 10.1111/j.1461-0248.2004.00686.x) Jueterbock, A., Smolina, I., Coyer, J. A., & Hoarau, G. (2016). The fate of the Arctic seaweed Fucus distichus under climate change: An ecological niche modeling approach. Ecology and Evolution, 6, 1712–1724. https://doi.org/10.1002/ece3.2001. (PMID: 10.1002/ece3.2001) Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas (CHELSA V1.2). Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122. Keil, P., Jetz, W., Belmaker, J., Wilson, A. M., & Unitt, P. (2013). Downscaling of species distribution models: A hierarchical approach. Methods in Ecology and Evolution. https://doi.org/10.1111/j.2041-210X.2012.00264.x. (PMID: 10.1111/j.2041-210X.2012.00264.x) Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G. T., Hopper, S. D., & Franklin, S. E. (2012). Refugia: Identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography, 21, 393–404. https://doi.org/10.1111/j.1466-8238.2011.00686.x. (PMID: 10.1111/j.1466-8238.2011.00686.x) Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., et al. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366–1379. (PMID: 10.1111/ddi.12096) Langham, G. M., Schuetz, J. G., Distler, T., Soykan, C. U., & Wilsey, C. (2015). Conservation status of North American birds in the face of future climate change. PLoS One. https://doi.org/10.1371/journal.pone.0135350. (PMID: 10.1371/journal.pone.0135350) Lawler, J. J., Ackerly, D. D., Albano, C. M., Anderson, M. G., Dobrowski, S. Z., Gill, J. L., Heller, N. E., Pressey, R. L., Sanderson, E. W., & Weiss, S. B. (2015). The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conservation Biology, 29, 618–629. https://doi.org/10.1111/cobi.12505. (PMID: 10.1111/cobi.12505) Lawler, J. J., Rinnan, D. S., Michalak, J. L., Withey, J. C., Randels, C. R., & Possingham, H. P. (2020). Planning for climate change through additions to a national protected area network: Implications for cost and configuration. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2019.0117. (PMID: 10.1098/rstb.2019.0117) Liu, C., Newell, G., & White, M. (2016). On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution, 6, 337–348. https://doi.org/10.1002/ece3.1878. (PMID: 10.1002/ece3.1878) Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462, 1052–1055. https://doi.org/10.1038/nature08649. (PMID: 10.1038/nature08649) Maresh Nelson, S. B., Ribic, C. A., Niemuth, N. D., Bernath-Plaisted, J., & Zuckerberg, B. (2023). Sensitivity of North American grassland birds to weather and climate variability. Conservation Biology. https://doi.org/10.1111/cobi.14143. (PMID: 10.1111/cobi.14143) McGinn, S. M. (2010). Weather and climate patterns in Canada’s prairie grasslands. Arthropods of Canadian Grasslands, 1, 105–119. McKechnie, A. E., Gerson, A. R., McWhorter, T. J., Smith, E. K., Talbot, W. A., & Wolf, B. O. (2017). Avian thermoregulation in the heat: Evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. Journal of Experimental Biology, 220, 2436–2444. https://doi.org/10.1242/jeb.155507. (PMID: 10.1242/jeb.155507) McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate change. Global Change Biology. https://doi.org/10.1111/gcb.13629. (PMID: 10.1111/gcb.13629) McMaster, D. G., & Davis, S. K. (2001). An evaluation of Canada’s permanent cover program: Habitat for grassland birds? (Una Evaluación de el Programa de Cubierta Permanente de Canadá: ¿Habitat para Aves de Verbazales?). Journal of Field Ornithology, 72, 195–210. (PMID: 10.1648/0273-8570-72.2.195) Michalak, J. L., Stralberg, D., Cartwright, J. M., & Lawler, J. J. (2020). Combining physical and species-based approaches improves refugia identification. Frontiers in Ecology and the Environment, 18, 254–260. https://doi.org/10.1002/fee.2207. (PMID: 10.1002/fee.2207) Monroe, A. P., Aldridge, C. L., Assal, T. J., Veblen, K. E., Pyke, D. A., & Casazza, M. L. (2017). Patterns in Greater Sage-Grouse population dynamics correspond with public grazing records at broad scales. Ecological Applications, 27, 1096–1107. https://doi.org/10.1002/eap.1512. (PMID: 10.1002/eap.1512) Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D., & Thorne, J. H. (2020). Climate-change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment, 18, 228–234. https://doi.org/10.1002/fee.2189. (PMID: 10.1002/fee.2189) Morelli, T. L., Daly, C., Dobrowski, S. Z., Dulen, D. M., Ebersole, J. L., Jackson, S. T., Lundquist, J. D., Millar, C. I., Maher, S. P., Monahan, W. B., Nydick, K. R., Redmond, K. T., Sawyer, S. C., Stock, S., & Beissinger, S. R. (2016). Managing climate change refugia for climate adaptation. PLoS One. https://doi.org/10.1371/journal.pone.0159909. (PMID: 10.1371/journal.pone.0159909) Nixon, A. E., Fisher, R. J., Stralberg, D., Bayne, E. M., & Farr, D. R. (2016). Projected responses of North American grassland songbirds to climate change and habitat availability at their northern range limits in Alberta, Canada. Avian Conservation and Ecology. https://doi.org/10.5751/ACE-00866-110202. (PMID: 10.5751/ACE-00866-110202) Olimb, S. K., & Robinson, B. (2019). Grass to grain: Probabilistic modeling of agricultural conversion in the North American Great Plains. Ecological Indicators, 102, 237–245. https://doi.org/10.1016/j.ecolind.2019.02.042. (PMID: 10.1016/j.ecolind.2019.02.042) Olson, D. M., & Dinerstein, E. (2002). The global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199–224. https://doi.org/10.2307/3298564. (PMID: 10.2307/3298564) Pachauri, R. K., Allen, M.R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: Synthesis report. In R. Pachauri, & L. Meyer (Eds), Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC. Partners in Flight. (2021). Partners in flight [WWW Document]. Avian Conservation Assessment Database Scores. URL https://pif.birdconservancy.org/avian-conservation-assessment-database-scores/ . Accessed 29 Sept 21. Paterson, J. E., Bortolotti, L. E., Kowal, P. D., Pidwerbesky, A. J., & Devries, J. H. (2024). Predicting the effects of land cover change on biodiversity in Prairie Canada using species distribution models. Biological Conservation. https://doi.org/10.1016/j.biocon.2024.110754. (PMID: 10.1016/j.biocon.2024.110754) Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161–175. (PMID: 10.1111/j.0906-7590.2008.5203.x) Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19, 181–197. https://doi.org/10.1890/07-2153.1. (PMID: 10.1890/07-2153.1) Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning (pp. 655-662). https://doi.org/10.1145/1015330.1015412. Price, D. T., Alfaro, R. I., Brown, K. J., Flannigan, M. D., Fleming, R. A., Hogg, E. H., Girardin, M. P., Lakusta, T., Johnston, M., McKenney, D. W., Pedlar, J. H., Stratton, T., Sturrock, R. N., Thompson, I. D., Trofymow, J. A., & Venier, L. A. (2013). Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environmental Reviews. https://doi.org/10.1139/er-2013-0042. (PMID: 10.1139/er-2013-0042) Rapacciuolo, G., Maher, S. P., Schneider, A. C., Hammond, T. T., Jabis, M. D., Walsh, R. E., Iknayan, K. J., Walden, G. K., Oldfather, M. F., Ackerly, D. D., & Beissinger, S. R. (2014). Beyond a warming fingerprint: Individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology, 20, 2841–2855. https://doi.org/10.1111/gcb.12638. (PMID: 10.1111/gcb.12638) Reddy, S., & Dávalos, L. M. (2003). Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography, 30, 1719–1727. https://doi.org/10.1046/j.1365-2699.2003.00946.x. (PMID: 10.1046/j.1365-2699.2003.00946.x) Roberts, C. M., O’Leary, B. C., & Hawkins, J. P. (2020). Climate change mitigation and nature conservation both require higher protected area targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), Article 20190121. (PMID: 10.1098/rstb.2019.0121) Roberts, D. R., & Hamann, A. (2012). Method selection for species distribution modelling: Are temporally or spatially independent evaluations necessary? Ecography, 35, 792–802. https://doi.org/10.1111/j.1600-0587.2011.07147.x. (PMID: 10.1111/j.1600-0587.2011.07147.x) Rupp, T., Duffy, P., Leonawicz, M., Lindgren, M., Breen, A., Kurkowski, T., Floyd, A., Bennett, A., & Krutikov, L. (2016). Chapter 2: Climate simulations, land cover, and wildfire. In Zhiliang, Z. & McGuire, A. D (Eds), Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska. U.S. Geological Professional Paper 1826. https://doi.org/10.3133/pp1826. Sauchyn, D., Davidson, D., Johnston, M., Flannigan, M., Fletcher, A., Isaac, K., Kulshreshtha, S., Kowalczyk, T., Mauro, I., Pittman, J., Reed, M. G., & Schneider, R. (2020). Canada in a changing climate: Regional perspectives report. Government of Canada. Sauer, J. R., Hines, J. E., Fallon, J. E., Pardieck, K. L., Ziolkowski, D. J., Jr., & Link, W. A. (2014). The North American breeding bird survey, results and analysis 1966–2013. Version, 1, 1966–2013. Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H., & Chapin, F. S. (2012). Thresholds for boreal biome transitions. Proceedings of the National Academy of Sciences of the United States of America, 109, 21384–21389. https://doi.org/10.1073/pnas.1219844110. (PMID: 10.1073/pnas.1219844110) Schloss, C. A., Nuñez, T. A., & Lawler, J. J. (2012). Dispersal will limit ability of mammals to track climate change in the western hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 109, 8606–8611. https://doi.org/10.1073/pnas.1116791109. (PMID: 10.1073/pnas.1116791109) Schneider, R. R., Devito, K., Kettridge, N., & Bayne, E. (2015). Moving beyond bioclimatic envelope models: Integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the western Canadian boreal plain. Ecohydrology, 9, 899–908. (PMID: 10.1002/eco.1707) Schwarz, A. G., & Wein, R. W. (1990). Grassland ecosystems and climate change: Hypotheses for the Northern Grassland Boreal Ecotone. In Proceedings of the Twelfth North American Prairie Conference (pp. 1–5). Skagen, S. K., & Adams, A. A. Y. (2012). Weather effects on avian breeding performance and implications of climate change. Ecological Applications, 22, 1131–1145. https://doi.org/10.1890/11-0291.1. (PMID: 10.1890/11-0291.1) Smith, E., O’Neill, J., Gerson, A., McKechnie, A., Wolf, B. (2017). Avian thermoregulation in the heat: Resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. Journal of Experimental Biology, 220. https://doi.org/10.1242/jeb.161141. Stewart, R. E. (1975). Breeding birds of North Dakota. Tri-college Center for Environmental Studies. Stralberg, D., Carroll, C., Pedlar, J. H., Wilsey, C. B., McKenney, D. W., & Nielsen, S. E. (2018). Macrorefugia for North American trees and songbirds: Climatic limiting factors and multi-scale topographic influences. Global Ecology and Biogeography, 27, 690–703. https://doi.org/10.1111/geb.12731. (PMID: 10.1111/geb.12731) Stralberg, D., Matsuoka, S. M., Hamann, A., Bayne, E. M., Sólymos, P., Schmiegelow, F. K. A., Wang, X., Cumming, S. G., & Song, S. J. (2015). Projecting boreal bird responses to climate change: The signal exceeds the noise. Ecological Applications, 25, 52–69. https://doi.org/10.1890/13-2289.1. (PMID: 10.1890/13-2289.1) Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One, 8(2), Article e55158. https://doi.org/10.1371/journal.pone.0055158. (PMID: 10.1371/journal.pone.0055158) Turner, M. G., Calder, W. J., Cumming, G. S., Hughes, T. P., Jentsch, A., LaDeau, S. L., Lenton, T. M., Shuman, B. N., Turetsky, M. R., Ratajczak, Z., Williams, J. W., Williams, A. P., & Carpenter, S. R. (2020). Climate change, ecosystems and abrupt change: Science priorities. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2019.0105. (PMID: 10.1098/rstb.2019.0105) Veech, J. A., Pardieck, K. L., & Ziolkowski, D. J. (2017). How well do route survey areas represent landscapes at larger spatial extents? An analysis of land cover composition along breeding bird survey routes. Condor, 119, 607–615. https://doi.org/10.1650/condor-17-15.1. (PMID: 10.1650/condor-17-15.1) Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36, 2290–2299. https://doi.org/10.1111/j.1365-2699.2009.02174.x. (PMID: 10.1111/j.1365-2699.2009.02174.x) Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic-boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26, 807–822. https://doi.org/10.1111/gcb.14804. (PMID: 10.1111/gcb.14804) AdaptWest Project. (2015). Gridded current and projected climate data for North America at 1km resolution, interpolated using the ClimateNA v5.10 software. (T. Wang et al., 2015). Available at adaptwest.databasin.org . Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342. https://doi.org/10.1890/10-1171.1. (PMID: 10.1890/10-1171.1) Warren, D. L., Wright, A. N., Seifert, S. N., & Shaffer, H. B. (2014). Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions, 20, 334–343. https://doi.org/10.1111/ddi.12160. (PMID: 10.1111/ddi.12160) Wiens, J. A. (1974). Climatic instability and the “ecological saturation” of bird communities in North American Grasslands. Condor, 76, 385–400. https://doi.org/10.2307/1365813. (PMID: 10.2307/1365813) Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106, 19729–19736. https://doi.org/10.1073/pnas.0901639106. (PMID: 10.1073/pnas.0901639106) Williams, J. E., & Blois, J. L. (2018). Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? Journal of Biogeography, 45, 2175–2189. https://doi.org/10.1111/jbi.13395. (PMID: 10.1111/jbi.13395) Willis, S., Foden, W., Baker, D., Belle, E., Burgess, N., Carr, J., Doswald, N., Garcia, R. A., Hartley, A., Hof, C., Newbold, T., Rahbek, C., Smith, R., Visconti, P., Young, B., Butchart, S. H. M., & Garcia, R. (2015). Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biological Conservation. https://doi.org/10.1016/j.biocon.2015.05.001. (PMID: 10.1016/j.biocon.2015.05.001) Wilsey, C., Taylor, L., Bateman, B., Jensen, C., Michel, N., Panjabi, A., & Langham, G. (2019). Climate policy action needed to reduce vulnerability of conservation-reliant grassland birds in North America. Conservation Science and Practice, 1, Article e21. https://doi.org/10.1111/csp2.21. (PMID: 10.1111/csp2.21) With, K.A. (2010). McCown’s longspur (Calcarius mccownii), in: Poole, A., Stettenheim, P., Gill, F. (Eds.), The Birds of North America. Academy of Natural Sciences, Philadelphia, PA, and American Ornithologist’s Union, Washington, D. C., Washington D.C. World Wildlife Fund. (2021). Plowprint. Washington DC. |
| Contributed Indexing: | Keywords: Climate change refugia; Climate-smart conservation planning; Grassland birds; Range shifts; Species distribution |
| Entry Date(s): | Date Created: 20251205 Date Completed: 20251205 Latest Revision: 20251205 |
| Update Code: | 20251205 |
| DOI: | 10.1007/s10661-025-14784-y |
| PMID: | 41348246 |
| Datenbank: | MEDLINE |
| Abstract: | The identification of climate change refugia is fundamental for climate-smart conservation planning, especially in highly altered landscapes, such as temperate grasslands. Our study aimed to identify breeding refugia for three focal grassland birds: Baird's sparrow (Centronyx bairdii), Sprague's pipit (Anthus spragueii), and thick-billed longspur (Rhynchophanes mccownii) across the Canadian prairies. We used species distribution models to identify breeding refugia within the climatically suitable range for two time periods (2050 and 2080) under two of the most likely climatic scenarios ("intermediate scenario" RCP 4.5 and "worst-case scenario" RCP 8.5). In doing so, we demonstrate the importance of incorporating species-specific dispersal ability and projected shifts in grassland habitats in the analyses. Our study predicts a northward shift in the breeding ranges of all three bird species under both climate scenarios, with almost 100% loss of their current breeding habitat. However, all species are expected to gain bioclimatic space outside of their current range under RCP 4.5 in 2050 and 2080. Further increases in emissions under the RCP 8.5 scenario will likely cause Baird's sparrow to lose bioclimatic space both in 2050 and 2080, and the same is true for the other two species only in 2080. Approximately 80% of currently suitable habitats for the focal species are located outside protected areas. As the climate warms, almost 100% of future breeding refugia for all birds are likely to reside outside protected areas in all climate change scenarios. Our study provides a framework for climate-integrated conservation planning for the wide-ranging migratory species.<br /> (© 2025. The Author(s).) |
|---|---|
| ISSN: | 1573-2959 |
| DOI: | 10.1007/s10661-025-14784-y |
Full Text Finder
Nájsť tento článok vo Web of Science