Deep learning framework for barcode localization and decoding using simulated UAV imagery.
Uloženo v:
| Název: | Deep learning framework for barcode localization and decoding using simulated UAV imagery. |
|---|---|
| Autoři: | Alsulami F; Department of Computer and Network Engineering, College of Computer Science and Engineering, University of Jeddah, 23890, Jeddah, Saudi Arabia. fnalsulami@uj.edu.sa., Jhanjhi NZ; School of Computer Science, Taylor's University, Subang Jaya, Malaysia.; Office of Research and Development, Asia University, Taichung, Taiwan. |
| Zdroj: | Scientific reports [Sci Rep] 2025 Dec 03. Date of Electronic Publication: 2025 Dec 03. |
| Publication Model: | Ahead of Print |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: London : Nature Publishing Group, copyright 2011- |
| Abstrakt: | Automated warehouse stock tracking is becoming increasingly important for improving logistics and reducing manual errors. Unmanned Aerial Vehicles (UAVs) offer a promising solution by enabling automated barcode scanning from above. However, challenges such as poor lighting, shadows, and partial occlusions still limit the reliability of real-time barcode detection and decoding. This research presents a deep learning framework evaluated on simulated UAV imagery for barcode inventory management. The proposed system uses the YOLOv8 object detection model to accurately localize both 1D and 2D barcodes in images captured from a UAV perspective. With a mean Average Precision (mAP) of 92.4%, the model demonstrates strong performance even in complex warehouse conditions. Once localized, the barcode regions are decoded using OpenCV's barcode module. The extracted data, including product ID and quantity, is then automatically updated into a MySQL database to simulate real-time stock updates. Although tested using simulated aerial imagery, the system is designed to be drone-ready with minimal adjustments. This modular approach shows potential for real-world UAV deployment and contributes to reducing human effort and errors in inventory tracking. (© 2025. The Author(s).) |
| Competing Interests: | Declarations. Competing interests: The authors declare no competing interests. |
| References: | Shivam & Gupta, M. Inventory and warehouse management in industry 4.0: A BPR perspective. J. Inf. Technol. Case Appl. Res. 26, 365–400. https://doi.org/10.1080/15228053.2024.2433926 (2024). Madamidola, O., Daramola, O., Akintola, K. & Adeboje, O. A. Review of existing inventory management systems. Int. J. Res. Eng. Sci. (IJRES) 12, 40–50. Available at: https://www.researchgate.net/publication/383947700_A_Review_of_Existing_Inventory_Management_Systems (2024) (Accessed: [03/04/2025]). Aldughayfiq, B., Ashfaq, F., Jhanjhi, N. & Humayun, M. Explainable AI for retinoblastoma diagnosis: Interpreting deep learning models with LIME and SHAP. Diagnostics 13 (11), 1932. https://doi.org/10.3390/diagnostics13111932 (2023). Ashfaq, F., Ghoniem, R., Jhanjhi, N., Khan, N. & Algarni, A. Using dual attention BiLSTM to predict vehicle lane changing maneuvers on highway dataset. Systems 11, 196. https://doi.org/10.3390/systems11040196 (2023). Tubis, A. & Rohman, J. Intelligent warehouse in industry 4.0—Systematic literature review. Sensors 23, 4105. https://doi.org/10.3390/s23084105 (2023). Dalenogare, L., Benitez, G., Ayala, N. & Frank, A. The expected contribution of industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394. https://doi.org/10.1016/j.ijpe.2018.08.019 (2018). Bai, C., Dallasega, P., Orzes, G. & Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Interna- Tional J. Prod. Econ. 229, 107776. https://doi.org/10.1016/j.ijpe.2020.107776 (2020). Ali, S. S., Khan, S., Fatma, N., Ozel, C. & Hussain, A. Utilisation of drones in achieving various applications in smart warehouse management. Benchmarking: Int. J. 31 (3), 920–954. https://doi.org/10.1108/BIJ-01-2023-0039 (2024). Yoon, B., Kim, H., Youn, G. & Rhee, J. 3d position estimation of objects for inventory management automation using drones. Appl. Sci. 13, 10830. https://doi.org/10.3390/app131910830 (2023). Mohd Noor, N., Abdullah, A. & Hashim, M. Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conference Series: Earth and Environmental Science. 169 012003. https://doi.org/10.1088/1755-1315/169/1/012003 (2018). Chen, C., Min, H., Peng, Y., Yang, Y. & Wang, Z. An intelligent real-time object detection system on drones. Appl. Sci. 12, 10227. https://doi.org/10.3390/app122010227 (2022). Ye, T. et al. Real-time object detection network in UAV-vision based on CNN and transformer. IEEE Trans. Instrum. Meas. 72, 1–13. https://doi.org/10.1109/TIM.2023.3241825 (2023). Jiang, P., Ergu, D., Liu, F., Cai, Y. & Ma, B. A review of Yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135 (2022). Zhai, X., Huang, Z., Li, T., Liu, H. & Wang, S. YOLO-drone: An optimized YOLOv8 network for tiny UAV object detection. Electronics 12, 3664. https://doi.org/10.3390/electronics12173664 (2023). Jahani, H., Khosravi, Y., Kargar, B., Ong, K. L. & Arisian, S. Exploring the role of drones and UAVs in logistics and supply chain management: A novel text-based literature review. Int. J. Prod. Res. 63 (5), 1873–1897. https://doi.org/10.1080/00207543.2024.2373425 (2025). Vivek, N. et al. Integrating deep Q- networks and YOLO with autonomous robots for efficient warehouse management. 5th International Conference on Recent Trends In Computer Science ad Technology (ICRTCST) 419–424. https://doi.org/10.1109/ICRTCST61793.2024.10578347 (2024). Bodnár, P. & Nyúl, L. Improving barcode detection with combination of simple detectors. Eighth International Conference on Signal Image Technology and Internet Based Systems 300–306. https://doi.org/10.1109/SITIS.2012.52 (2012). Li, J., Zhang, D., Zhou, M. & Cao, Z. A motion blur QR code identification algorithm based on feature extracting and improved adaptive thresholding. Neurocomputing 493, 351–361. https://doi.org/10.1016/j.neucom.2022.04.041 (2022). Akinbade, D., Ogunde, A., Odim, M. & Oguntunde, B. An adaptive thresholding algorithm-based optical character recognition system for information extraction in complex images. J. Comput. Sci. 16, 784–801. https://doi.org/10.3844/jcssp.2020.784.801 (2020). Tribak, H. & Zaz, Y. QR code patterns localization based on Hu invariant moments. Int. J. Adv. Comput. Sci. Appl. 8, 162 https://pdfs.semanticscholar.org/62ea/3a3511f17237c4c909e237a7576f9aacdac (2017). 0.pdf Accessed on:02/04/2025. Katona, M. & Nyúl, L. A novel method for accurate and efficient barcode detection with morphological operations. Eighth International Conference on Signal Image Technology and Internet Based Systems 307–314. https://doi.org/10.1109/SITIS.2012.53 (2012). Li, X., Shi, Z., Guo, D. & He, S. Reconstruct argorithm of 2D barcode for reading the QR code on cylindrical surface. 2013 International Conference Anti-counterfeiting Security Identification (ASID) 1–5. https://doi.org/10.1109/ICASID.2013.6825309 (2013). Katona, M., Bodnár, P. & Nyúl, L. Distance transform and template matching based methods for localization of barcodes and QR codes. Comput. Sci. Inform. Syst. 17, 161–179. https://doi.org/10.2298/CSIS181011020K (2020). Szentandrási, I., Herout, A. & Dubská, M. Fast detection and recognition of QR codes in high-resolution images. Proceedings of the 28th Spring Conference on Computer Graphics 129–136. https://doi.org/10.1145/2448531.2448548 (2012). Parikh, D. & Jancke, G. Localization and segmentation of a 2D high capacity color barcode. 22008 IEEE Workshop on Applications of Computer Vision 1–6. https://doi.org/10.1109/WACV.2008.4544033 (2008). Tsai, M., Lee, Y. & Chen, T. Implementing deep convolutional neural networks for QR code-based printed source identification. Algorithms 16, 160. https://doi.org/10.3390/a16030160 (2023). Chou, T., Ho, C. & Kuo, Y. QR code detection using convolutional neural networks. 2015 International Conference on Advanced Robotics and Intelligent Systems (ARIS) 1–5. https://doi.org/10.1109/ARIS.2015.7158354 (2015). Rahman, M. et al. An approach to facilitate business system by multiple barcode detection using faster Rcnn. Int. J. Appl. Inform. Syst. 12, 10–15. https://doi.org/10.5120/ijais2019451835 (2019). Cao, C., Wang, B., Zhang, W., Zeng, X., Yan, X., Feng, Z., Wu, Z. An improved faster R-CNN for small object detection. IEEE Access, 7, 106838–106846. https://doi.org/10.1109/ACCESS.2019.2932731 (2019). Qiao, L. et al. Efficient 1D barcode localization method for imagery shipping label using deep learning models. 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP) 119–124 https://doi.org/10.1109/PAAP54281.2021.9720443 (2021). Li, C., Zeng, Q. & Lu, L. Lightweight barcode positioning algorithm based on YOLO model. IEEE Access https://doi.org/10.1109/ACCESS.2024.3511125 (2024). Ershova, D., Gayer, A., Bezmaternykh, P. & Arlazarov, V. YOLO-barcode: Towards universal real-time barcode detection on mobile devices. 48, 592–600. https://cyberleninka.ru/article/n/yolo-barcode-towards-universal-real-time-barcode-detection-on-mobile-devices (2024). (дата обращения: 30.10.2025). Qu, Y. & Zhang, F. MGL-YOLO: A lightweight barcode target detection algorithm. Sensors 24, 7590. https://doi.org/10.3390/s24237590 (2024). Brylka, R., Schwanecke, U. & Bierwirth, B. Camera based barcode localization and decoding in real-world applications. International Conference on Omni-Layer Intelligent Systems (COINS) 1–8https://doi.org/10.1109/COINS49042.2020.9191416 (2020). Chen, J., Dai, N., Hu, X. & Yuan, Y. A. Lightweight barcode detection algorithm based on deep learning. Appl. Sci. 14, 10417. https://doi.org/10.3390/app142210417 (2024). Kolekar, A. & Dalal, V. Barcode detection and classification using SSD (single shot multibox detector) deep learning algorithm. Proceedings of the 3rd International Conference on Advances in Science Technology (ICAST). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3568499# (2020). Accessed on: 03/04/2025. Kwon, W. et al. Robust autonomous navigation of unmanned aerial vehicles (UAVs) for warehouses’ inventory application. IEEE Rob. Autom. Lett. 5, 243–249. https://doi.org/10.1109/LRA.2019.2955003 (2019). Zhong, J. & Qian, H. Dynamic point-line SLAM based on lightweight object detection. Appl. Intell. 55, 260. https://doi.org/10.1007/s10489-024-06164-9 (2025). Yang, S., Jan, H., Chen, C., Wang, M. & CNN-Based, Q. R. Code reading of package for unmanned aerial vehicle. Sensors 23, 4707. https://doi.org/10.3390/s23104707 (2023). Sun¹, S. et al. Check for updates analysis and research of intelligent distribution UAV control system based on optical flow sensor. Innovative Computing Vol 1-Emerging Topics in Artificial Intelligence: Proceedings of IC 1044, 128. https://doi.org/10.1007/978-981-99-2092-1_16 (2023). Wang, S. & Ahmad, N. A. Comprehensive review on sensor fusion techniques for localization of a dynamic target in GPS-denied environments. IEEE Access https://doi.org/10.1109/ACCESS.2024.3519874 (2024). Barzazzi, D. A quantitative evaluation of the QR code detection and decoding performance in the zxing library. (Università Ca’Foscari Venezia,2023). https://hdl.handle.net/20.500.14247/14148 Accessed on: 01/03/2025. Abas, A., Yusof, Y. & Ahmad, F. Expanding the data capacity of QR codes using multiple compression algorithms and base64 encode/decode. J. Telecommun. Electron. Comput. Eng. (JTEC). 9, 41–47 (2017). https://jtec.utem.edu.my/jtec/article/view/2217 Accessed on:03/03/2025. Martinez Carpena, D. Reading QR codes on challenging surfaces. https://hdl.handle.net/2445/180942 (2020). Accessed on:03/03/2025. Sakib, N. A. Study on Image Processing to Facilitate Business System by Multiple Barcode Detection. (Ahsanullah University of Science, 2019). (Department of Computer Science and Engineering Ahsanullah University of Science and Technology). Ren, Y. & Liu, Z. Barcode detection and decoding method based on deep learning. 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE) 393–396. https://doi.org/10.1109/ICISCAE48440.2019.217911 (2019). Xu, Y., Qu, Z. & Zheng, S. High-speed barcode recognition system based on OpenCV and Zbar. Eleventh Int. Conf. Digit. Image Process. (ICDIP 2019). 11179, 384–392. https://doi.org/10.1117/12.2539756 (2019). Ait Abderrahim, I. & Benrached, Y. Automated medical labels detection and text extraction using tesseract. International Symposium on Modelling and Implementation of Complex Systems 212–225. https://doi.org/10.1007/978-3-031-82112-7_16 (2024). Monteiro, G. et al. A comprehensive framework for industrial sticker information recognition using advanced OCR and object detection techniques. Appl. Sci. 13, 7320. https://doi.org/10.3390/app13127320 (2023). Xu, X., Xue, Z. & Zhao, Y. Research on an algorithm of express parcel sorting based on deeper learning and multi-information recognition. Sensors 22, 6705. https://doi.org/10.3390/s22176705 (2022). Gaur, P. & Tiwari, S. Recognition of 2D barcode images using edge detection and morphological operation. Int. J. Comput. Sci. Mob. Comput. 3, 1277–1282 (2014). Yang, H., Chen, L., Chen, Y., Lee, Y. & Yin, Z. Automatic barcode recognition method based on adaptive edge detection and a mapping model. J. Electron. Imaging. 25, 053019–053019. https://doi.org/10.1117/1.JEI.25.5.053019 (2016). Tekin, E., Coughlan, J. BLaDE barcode localization and decoding engine. Tech. Rep. 2012-RERC. 01.https://aviatr.wiscweb.wisc.edu/wp-content/uploads/sites/150/2017/09/BLaDE_TechReport.pdf (2012). Accessed on: 02/03/2025. Wudhikarn, R., Charoenkwan, P. & Malang, K. Deep learning in barcode recognition: A systematic literature review. IEEE Access.. 10, 8049–8072. https://doi.org/10.1109/ACCESS.2022.3143033 (2022). Kamnardsiri, T., Charoenkwan, P., Malang, C. & Wudhikarn, R. 1D barcode detection: Novel benchmark datasets and comprehensive comparison of deep convolutional neural network approaches. Sensors 22, 8788. https://doi.org/10.3390/s22228788 (2022). Gómez-Cárdenes, Ó., Marichal-Hernández, J., Son, J., Pérez Jiménez, R. & Rodrıguez-Ramos, J. An encoder–decoder architecture within a classical signal-processing framework for real-time barcode segmentation. Sensors 23, 6109. https://doi.org/10.3390/s23136109 (2023). Tang, J. & Zeng, Y. UAV data acquisition and processing assisted by UGV-enabled mobile edge computing. IEEE Trans. Industr. Inf. https://doi.org/10.1109/TII.2025.3528540 (2025). Cho, H., Kim, D., Park, J., Roh, K. & Hwang, W. 2D barcode detection using images for drone-assisted inventory management. 2018 15th International Conference on Ubiquitous Robots (UR) 461–465. https://doi.org/10.1109/URAI.2018.8441834 (2018). Zhang, R. Fpga soc fiducial system for unmanned aerial vehicles. (Master’s thesis, Rochester Institute of Technology, 2018.[Online]. Available http://www.ravvenlabs.com/uploads/1/1/8/4/118484574/zhang.pdf (2018). Accessed on: 05/04/2025. Zhou, H., Hu, F., Juras, M., Mehta, A. & Deng, Y. Real-time video streaming and control of cellular-connected UAV system: Prototype and performance evaluation. IEEE Wirel. Commun. Lett. 10, 1657–1661. https://doi.org/10.1109/LWC.2021.3076415 (2021). Zamberletti, A., Gallo, I., Albertini, S. & Noce, L. Neural 1D barcode detection using the Hough transform. Inform. Media Technol. 10, 157–165. https://doi.org/10.11185/imt.10.157 (2015). Wang, Z., Chen, A., Li, J., Yao, Y. & Luo, Z. 1D barcode region detection based on the Hough transform and support vector machine. MultiMedia Modeling: 22nd International Conference, MMM 2016, Miami, FL, USA, January 4–6, 2016, Proceedings, Part II 22 79–90. https://doi.org/10.1007/978-3-319-27674-8_8 (2016). Hansen, D., Nasrollahi, K., Rasmussen, C. & Moeslund, T. Real-time barcode detection and classification using deep learning. International Joint Conference on Computational Intelligence 321–327. https://doi.org/10.5220/0006508203210327 (2017). Pandya, K. et al. Barcode and QR code object detection: An experimental study on YOLOv8 models. 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP) 740–746. https://doi.org/10.1109/INNOCOMP63224.2024.00127 (2024). Xiao, Y. & Ming, Z. 1D barcode detection via integrated deep-learning and geometric approach. Appl. Sci. 9 (16), 3268. https://doi.org/10.3390/app9163268 (2019). Kalinov, I., Petrovsky, A., Ilin, V., Pristanskiy, E., Kurenkov, M., Ramzhaev, V., Tsetserukou, D. Warevision: Cnn barcode detection-based uav trajectory optimization for autonomous warehouse stocktaking. IEEE Robot. Autom. Lett. 5(4), 6647–6653. https://doi.org/10.1109/LRA.2020.3010733 (2020). Zhu, X. Design of barcode recognition system based on YOLOV5. In J. Phys. Conf. Series 1995(1), 012052. (IOP Publishing, 2021). https://doi.org/10.1088/1742-6596/1995/1/012052. |
| Entry Date(s): | Date Created: 20251203 Latest Revision: 20251203 |
| Update Code: | 20251204 |
| DOI: | 10.1038/s41598-025-29720-w |
| PMID: | 41339720 |
| Databáze: | MEDLINE |
| Abstrakt: | Automated warehouse stock tracking is becoming increasingly important for improving logistics and reducing manual errors. Unmanned Aerial Vehicles (UAVs) offer a promising solution by enabling automated barcode scanning from above. However, challenges such as poor lighting, shadows, and partial occlusions still limit the reliability of real-time barcode detection and decoding. This research presents a deep learning framework evaluated on simulated UAV imagery for barcode inventory management. The proposed system uses the YOLOv8 object detection model to accurately localize both 1D and 2D barcodes in images captured from a UAV perspective. With a mean Average Precision (mAP) of 92.4%, the model demonstrates strong performance even in complex warehouse conditions. Once localized, the barcode regions are decoded using OpenCV's barcode module. The extracted data, including product ID and quantity, is then automatically updated into a MySQL database to simulate real-time stock updates. Although tested using simulated aerial imagery, the system is designed to be drone-ready with minimal adjustments. This modular approach shows potential for real-world UAV deployment and contributes to reducing human effort and errors in inventory tracking.<br /> (© 2025. The Author(s).) |
|---|---|
| ISSN: | 2045-2322 |
| DOI: | 10.1038/s41598-025-29720-w |
Full Text Finder
Nájsť tento článok vo Web of Science