Intra-scale interaction and cross-scale fusion network for detecting the progression of neurodegeneration in Alzheimer's disease.

Saved in:
Bibliographic Details
Title: Intra-scale interaction and cross-scale fusion network for detecting the progression of neurodegeneration in Alzheimer's disease.
Authors: Babu T; Department of Electronics and Communication Engineering, St. Joseph's College of Engineering, Chennai, 600 119, India., Mahendran R; Computer Science and Engineering, Koneru Lakshmaiah Education Foundation Green Fields, Vaddeswaram, 522502, Guntur, Andhra Pradesh, India., Ajitha P; Department of Computer Science and Engineering, School of Computing, Sathyabama Institue of Science and Technology, Chennai, 600119, India., Rajendran S; Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India. surendran.phd.it@gmail.com.
Source: Scientific reports [Sci Rep] 2025 Dec 04. Date of Electronic Publication: 2025 Dec 04.
Publication Model: Ahead of Print
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s): Original Publication: London : Nature Publishing Group, copyright 2011-
Competing Interests: Declarations. Competing interests: The authors declare no competing interests. Ethical approval: All work was done in an ethical manner, following the appropriate guidelines and regulations set by ADNI Research. We confirm that we obtained approval to use the ADNI dataset via the ADNI Data Use Agreement and that all ADNI participants provided written informed consent at the time of data collection.
References: Jiang, Q. et al. Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances. Signal. Transduct. Target. Therapy. 10 (1), 76 (2025).
Pan, D. et al. Tianzi Jiang, and alzheimer’s disease neuroimaging initiative (ADNI). Deep learning for brain MRI confirms patterned pathological progression in alzheimer’s disease. Adv. Sci. 10 (6), 2204717 (2023).
Chatterjee, I. & Bansal, V. LRE-MMF: A novel multi-modal fusion algorithm for detecting neurodegeneration in parkinson’s disease among the geriatric population. Exp. Gerontol. 197, 112585 (2024).
Alorf, A. & Muhammad Usman Ghani Khan. Multi-label classification of alzheimer’s disease stages from resting-state fMRI-based correlation connectivity data and deep learning. Comput. Biol. Med. 151, 106240 (2022).
Lu, X., Zhang, Y., Tang, Y., Bernick, C. & Guogen Shan. Conversion to alzheimer’s disease dementia from normal cognition directly or with the intermediate mild cognitive impairment stage. Alzheimer’s Dement. 21 (1), e14393 (2025).
Olaimat, A., Martinez, M. J. & Saeed, F. PPAD: a deep learning architecture to predict progression of Alzheimer’s disease. Bioinformatics 39, i149–i157 (2023).
Pradeep, K., Rambabu, B., Surendran, R. & Balamurugan, K. S. January. Early Prediction of Alzheimer’s Dementia Using Random Forest Machine Learning Algorithm: A Data-Driven Approach. In 2025 8th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech) (pp. 1–6). IEEE. (2025).
El-Assy, A. M., Hanan, M., Amer, H. M., Ibrahim & Mohamed, M. A. A novel CNN architecture for accurate early detection and classification of alzheimer’s disease using MRI data. Sci. Rep. 14 (1), 3463 (2024).
Sadeghi, M. et al. Detecting alzheimer’s disease stages and frontotemporal dementia in time courses of resting-state fmri data using a machine learning approach. J. Imaging Inf. Med. 37(6), 2768–2783 (2024).
Choudhury, C., Goel, T. & Tanveer, M. A coupled-GAN architecture to fuse MRI and PET image features for multi-stage classification of alzheimer’s disease. Inform. Fusion. 109, 102415 (2024).
Ni, Y. C. et al. Classification prediction of Alzheimer’s disease and vascular dementia using physiological data and ECD SPECT images. Diagnostics 14(4), 365 (2024).
Liu, Y., Wang, L., Ning, X., Gao, Y. & Wang, D. Enhancing early alzheimer’s disease classification accuracy through the fusion of sMRI and RsMEG data: a deep learning approach. Front. NeuroSci. 18, 1480871 (2024).
Elazab, A. et al. Alzheimer’s disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions. Expert Syst. Appl. 255, 124780 (2024).
Odusami, M., Maskeliūnas, R., Damaševičius, R. & Misra, S. Explainable deep-learning-based diagnosis of alzheimer’s disease using multimodal input fusion of PET and MRI images. J. Med. Biol. Eng. 43 (3), 291–302 (2023).
Joypriyanka, M. & Surendran, R. February. Chess Game to Improve the Mental Ability of Alzheimer’s Patients using A3C. In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1–6). IEEE. (2023).
Wang, Y. et al. Predicting long-term progression of alzheimer’s disease using a multimodal deep learning model incorporating interaction effects. J. Translational Med. 22 (1), 265 (2024).
Aqeel, A. et al. A long short-term memory biomarker-based prediction framework for Alzheimer’s disease.. Sensors 22(4), 1475 (2022).
Archana, R. & Eliahim Jeevaraj, P. S. Deep learning models for digital image processing: a review. Artif. Intell. Rev. 57 (1), 11 (2024).
Rahim, N., El-Sappagh, S. & Rizk, H. Omar Amin El-serafy, and tamer Abuhmed. Information fusion-based bayesian optimized heterogeneous deep ensemble model based on longitudinal neuroimaging data. Appl. Soft Comput. 162, 111749 (2024).
Nanthini, K., Tamilarasi, A., Sivabalaselvamani, D. & Suresh, P. Automated classification of alzheimer’s disease based on deep belief neural networks. Neural Comput. Appl. 36 (13), 7405–7419 (2024).
Ferri, R. et al. Stacked autoencoders as new models for an accurate alzheimer’s disease classification support using resting-state EEG and MRI measurements. Clin. Neurophysiol. 132 (1), 232–245 (2021).
Khan, A. & Zubair, S. An improved multi-modal based machine learning approach for the prognosis of alzheimer’s disease. J. King Saud University-Computer Inform. Sci. 34 (6), 2688–2706 (2022).
Morar, U. et al. Prediction of cognitive test scores from variable length multimodal data in alzheimer’s disease. Cogn. Comput. 15 (6), 2062–2086 (2023).
Abdelaziz, M., Wang, T. & Elazab, A. Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. J. Biomed. Inform. 121, 103863 (2021).
Zhang, J. et al. Multi-modal cross-attention network for alzheimer’s disease diagnosis with multi-modality data. Comput. Biol. Med. 162, 107050 (2023).
Joypriyanka, M. & Surendran, R. August. Checkers game therapy to improve the mental ability of alzheimer’s patient using ai virtual assistant. In 2023 Second International Conference on augmented intelligence and sustainable systems (ICAISS) (pp. 96–102). IEEE. (2023).
Venugopalan, J., Tong, L., Hassanzadeh, H. R. & May, D. Multimodal deep learning models for early detection of Alzheimer’s disease stage.. Scientific reports 11(1), 3254 (2021).
Jeong, S., Jung, W., Sohn, J. & Heung-Il, S. Deep geometric learning with monotonicity constraints for alzheimer’s disease progression. IEEE Trans. Neural Networks Learn. Systems (2024).
Yoon, J., Zame, W. R. & Mihaela Van Der Schaar. Estimating missing data in Temporal data streams using multi-directional recurrent neural networks. IEEE Trans. Biomed. Eng. 66 (5), 1477–1490 (2018).
Zhang, C. et al. Cross-dataset Evaluation of Dementia Longitudinal Progression Prediction Models. medRxiv (2024).
Jung, W., Jun, E., Suk, H. I. & Alzheimer’s Disease Neuroimaging Initiative. and. Deep recurrent model for individualized prediction of Alzheimer’s disease progression. NeuroImage 237 : 118143. (2021).
Zuo, Q. et al. Alzheimer’s disease prediction via brain structural-functional deep fusing network. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4601–4612 (2023).
Lu, P., Mitelpunkt, L. H. A., Bhatnagar, S., Lu, L. & Liang, H. A hierarchical attention-based multimodal fusion framework for predicting the progression of alzheimer’s disease. Biomed. Signal Process. Control. 88, 105669 (2024).
Sheng, J. et al. A hybrid multimodal machine learning model for detecting alzheimer’s disease. Comput. Biol. Med. 170, 108035 (2024).
Abdelaziz, M., Wang, T. & Anwaar, W. Multi-scale multimodal deep learning framework for alzheimer’s disease diagnosis. Comput. Biol. Med. 184, 109438 (2025).
Yu, Q. et al. Wenyuan Li, and alzheimer’s disease neuroimaging Initiative. A transformer-based unified multimodal framework for alzheimer’s disease assessment. Comput. Biol. Med. 180, 108979 (2024).
Duong, Q., Anh, S. D., Tran & Jin Kyu Gahm. Multimodal surface-based transformer model for early diagnosis of alzheimer’s disease. Sci. Rep. 15 (1), 5787 (2025).
Muksimova, S., Umirzakova, S. & Baltayev, J. Multi-Modal fusion and longitudinal analysis for Alzheimer’s disease classification using deep learning.. Diagnostics 15(1), 717 (2025).
Zheng, G., Lu, Y. & Chen, H. Deep learning based framework for predicting mild cognitive impairment progression in neurology using longitudinal MRI. IEEE Access (2025).
Keerin, P. & Boongoen, T. Improved Knn imputation for missing values in gene expression data. Computers Mater. Continua. 70 (2), 4009–4025 (2021).
Lu, G., Zhang, W. & Wang, Z. Optimizing depthwise separable Convolution operations on Gpus. IEEE Trans. Parallel Distrib. Syst. 33 (1), 70–87 (2021).
Li, X., Wang, W. & Yang, J. Xiaolin Hu, and Selective kernel networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 510–519. (2019).
Im, C. et al. Investigating the effect of brain atrophy on transcranial direct current stimulation: A computational study using ADNI dataset. Comput. Methods Programs Biomed. 257, 108429 (2024).
Nithya, V. P., Mohanasundaram, N. & Santhosh, R. An early detection and classification of alzheimer’s disease framework based on ResNet-50. Curr. Med. Imaging. 20 (1), e250823220361 (2024).
Borhade, R., Ravindra, S. S., Barekar, Sharada, N., Ohatkar, Piyush, K. & Mathurkar Ravindra Honaji Borhade, and pushpa Manoj Bangare. ResneXt-Lenet: A hybrid deep learning for epileptic seizure prediction. Intell. Decis. Technol. 18 (3), 1675–1693 (2024).
Sethi, M., Singh, S. & Arora, J. Classification of Alzheimer’s disease using transfer learning mobilenet convolutional neural network. In International Conference on Emergent Converging Technologies and Biomedical Systems, pp. 19–28. Springer Nature(2022).
Gullipalli, N., Misra, A. & Pappu, S. R. Mallikharjuna Rao Karreddula, and Balajee Maram. Residual Shufflenet with optimization: A novel approach for brain tumor detection in MRI images. International J. Biomathematics (2025).
Agarwal, D. Manuel Álvaro Berbís, Antonio Luna, Vivian Lipari, Julien Brito Ballester, and Isabel de La Torre-Díez. Automated medical diagnosis of Alzheimer´ s disease using an efficient net convolutional neural network. J. Med. Syst. 47 (1), 57 (2023).
Lee, G., Nho, K., Kang, B., Sohn, K. A. & Kim, D. Predicting Alzheimer’s disease progression using multi-modal deep learning approach.. Scientific reports 9(1), 1952 (2019).
Dao, D. P., Yang, H. J., Kim, J. & Ngoc-Huynh, H. Longitudinal Alzheimer’s disease progression prediction with modality uncertainty and optimization of information flow. IEEE J. biomedical health informatics 29(1), 259–272 (2024).
Contributed Indexing: Keywords: Alzheimer’s disease; Cognitive scores and depthwise separable convolution network; Cross-scale fusion network; Intra-scale interaction; Neurodegeneration
Entry Date(s): Date Created: 20251203 Latest Revision: 20251203
Update Code: 20251204
DOI: 10.1038/s41598-025-31179-8
PMID: 41339497
Database: MEDLINE
Description
Abstract:Declarations. Competing interests: The authors declare no competing interests. Ethical approval: All work was done in an ethical manner, following the appropriate guidelines and regulations set by ADNI Research. We confirm that we obtained approval to use the ADNI dataset via the ADNI Data Use Agreement and that all ADNI participants provided written informed consent at the time of data collection.
ISSN:2045-2322
DOI:10.1038/s41598-025-31179-8