Drosophila and mouse intestinal stem cells are spatiotemporally specified by Notch suppression and Wnt activation.

Gespeichert in:
Bibliographische Detailangaben
Titel: Drosophila and mouse intestinal stem cells are spatiotemporally specified by Notch suppression and Wnt activation.
Autoren: Wu Y; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Yu L; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Yu Y; Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Wu S; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Yuan Q; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Duan W; Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China., Cai S; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Xiong B; Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China., Lin R; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China., Guo Z; Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China.
Quelle: Science advances [Sci Adv] 2025 Dec 05; Vol. 11 (49), pp. eady7272. Date of Electronic Publication: 2025 Dec 03.
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 101653440 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2375-2548 (Electronic) Linking ISSN: 23752548 NLM ISO Abbreviation: Sci Adv Subsets: MEDLINE
Imprint Name(s): Original Publication: Washington, DC : American Association for the Advancement of Science, [2015]-
MeSH-Schlagworte: Receptors, Notch*/metabolism , Receptors, Notch*/genetics , Stem Cells*/metabolism , Stem Cells*/cytology , Drosophila Proteins*/metabolism , Drosophila Proteins*/genetics , Intestines*/cytology , Wnt Signaling Pathway* , Wnt Proteins*/metabolism, Animals ; Mice ; Drosophila ; Drosophila melanogaster ; Receptors, G-Protein-Coupled/metabolism ; Cell Differentiation ; Intestinal Mucosa/metabolism ; Intestinal Mucosa/cytology
Abstract: The specification of intestinal stem cells (ISCs) during development is critical for maintaining intestinal homeostasis. However, the mechanisms underlying this process remain elusive. Here, by counting and tracing ISC in Drosophila pupal midgut, we show that ISCs are specified within a narrow 12-hour developmental window, with ~150 ISCs emerging from a pool of ~6000 intestinal epithelial cells. Single-cell sequencing revealed the involvement of Notch and Wnt signaling, with genetic experiments demonstrating that ISC specification requires both Notch suppression and Wnt activation. Furthermore, we showed that Wnt signaling is activated in discrete spatial domains, and Notch-mediated lateral inhibition specifies ISCs in these Wnt-active zones, achieving a ratio of ~1/40. Notably, Notch suppression also promoted the specification of Lgr5 + progenitors in the mouse embryonic intestine. Together, our data show that Wnt activation defines niches permissive for ISC fate, whereas Notch suppression licenses fate commitment, a spatiotemporal coordination conserved from insects to mammals.
References: J Mol Biol. 2007 Apr 6;367(4):953-69. (PMID: 17316686)
Gene Expr Patterns. 2011 Jan-Feb;11(1-2):12-21. (PMID: 20804858)
Cell. 2010 Mar 19;140(6):859-70. (PMID: 20303876)
Cell Stem Cell. 2011 Sep 2;9(3):193-204. (PMID: 21885017)
Science. 1997 Oct 3;278(5335):120-3. (PMID: 9311916)
Cell Rep. 2012 Oct 25;2(4):991-1001. (PMID: 23063364)
Science. 2022 Mar 4;375(6584):eabk2432. (PMID: 35239393)
Dev Biol. 2011 May 15;353(2):161-72. (PMID: 21382366)
Development. 2002 Jun;129(11):2565-76. (PMID: 12015286)
Cancer Res. 1997 Oct 15;57(20):4624-30. (PMID: 9377578)
Curr Biol. 2022 Jul 25;32(14):R791-R805. (PMID: 35882203)
Nature. 2025 Apr;640(8057):231-239. (PMID: 39778708)
Nat Cell Biol. 2021 Jul;23(7):745-757. (PMID: 34155382)
Dev Cell. 2025 Feb 03;60(3):429-446.e6. (PMID: 39532106)
Science. 2008 Jan 18;319(5861):333-6. (PMID: 18202290)
Cell. 1996 Nov 29;87(5):833-44. (PMID: 8945511)
Dev Cell. 2024 Jan 8;59(1):125-140.e12. (PMID: 38096823)
Dev Biol. 2016 Aug 15;416(2):347-60. (PMID: 27321560)
PLoS Genet. 2015 Dec 18;11(12):e1005634. (PMID: 26683696)
Nat Rev Mol Cell Biol. 2021 Jan;22(1):39-53. (PMID: 32958874)
Nat Cell Biol. 2012 Oct;14(10):1099-1104. (PMID: 23000963)
PLoS Genet. 2019 Jun 13;15(6):e1008111. (PMID: 31194729)
Nature. 2008 Oct 23;455(7216):1119-23. (PMID: 18806781)
Nature. 2017 Aug 31;548(7669):588-591. (PMID: 28847000)
Nature. 2009 Jan 29;457(7229):608-11. (PMID: 19092804)
Dev Dyn. 2012 Jan;241(1):85-91. (PMID: 21972080)
PLoS Genet. 2017 Jul 14;13(7):e1006870. (PMID: 28708826)
Genesis. 2010 Oct 1;48(10):607-11. (PMID: 20681020)
Nature. 2014 Jan 9;505(7482):180-5. (PMID: 24390349)
Science. 2010 Jan 8;327(5962):210-3. (PMID: 20056890)
Elife. 2023 Jul 05;12:. (PMID: 37404133)
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1514-1523. (PMID: 31915294)
Development. 2012 Nov;139(21):3917-25. (PMID: 23048182)
Cell. 2009 Jun 26;137(7):1343-55. (PMID: 19563763)
Cell Death Discov. 2018 Jul 23;4:17. (PMID: 30062062)
Nature. 2019 Jun;570(7759):107-111. (PMID: 31092921)
Cell. 1998 Jun 26;93(7):1171-82. (PMID: 9657150)
Stem Cell Reports. 2022 May 10;17(5):1138-1153. (PMID: 35395175)
Dev Biol. 2011 Jun 1;354(1):31-43. (PMID: 21440535)
Science. 2014 Oct 3;346(6205):1248012. (PMID: 25278615)
Dev Cell. 2018 Apr 23;45(2):183-197.e5. (PMID: 29689194)
Dev Cell. 2019 May 20;49(4):574-589.e5. (PMID: 31006650)
Cell Host Microbe. 2019 Sep 11;26(3):412-425.e5. (PMID: 31492656)
Development. 2006 Nov;133(21):4257-67. (PMID: 17021037)
Genome Biol. 2014;15(6):122. (PMID: 25180339)
Science. 2007 Feb 16;315(5814):988-92. (PMID: 17303754)
Cell. 2015 Apr 23;161(3):569-580. (PMID: 25865482)
Cell. 1991 Nov 15;67(4):701-16. (PMID: 1934068)
EMBO J. 2024 Apr;43(8):1570-1590. (PMID: 38499787)
Development. 2014 Feb;141(4):752-60. (PMID: 24496613)
Mol Cancer. 2019 Mar 30;18(1):66. (PMID: 30927915)
Cell Stem Cell. 2011 Jan 7;8(1):84-95. (PMID: 21167805)
Cell. 2024 Jun 6;187(12):3039-3055.e14. (PMID: 38848677)
Dev Biol. 2013 May 1;377(1):177-87. (PMID: 23410794)
EMBO Rep. 2011 Sep 30;12(10):1047-54. (PMID: 21869817)
EMBO J. 2017 Apr 3;36(7):869-885. (PMID: 28077488)
Genes Dev. 2002 Jan 15;16(2):209-21. (PMID: 11799064)
Cell Rep. 2013 May 30;3(5):1725-38. (PMID: 23643535)
Cell Stem Cell. 2014 Feb 6;14(2):149-59. (PMID: 24332836)
Genes Dev. 2004 Jun 15;18(12):1385-90. (PMID: 15198980)
Trends Neurosci. 2001 May;24(5):251-4. (PMID: 11311363)
Nature. 2018 May;557(7704):242-246. (PMID: 29720649)
Development. 2009 Jul;136(13):2255-64. (PMID: 19502486)
Nat Cell Biol. 2002 Jun;4(6):416-24. (PMID: 12021767)
Nat Rev Cancer. 2001 Oct;1(1):55-67. (PMID: 11900252)
Science. 1993 Dec 10;262(5140):1734-7. (PMID: 8259519)
J Cell Sci. 2011 Feb 1;124(Pt 3):348-58. (PMID: 21242311)
Cell. 2024 Jun 6;187(12):3056-3071.e17. (PMID: 38848678)
Gene Expr Patterns. 2007 Feb;7(4):413-22. (PMID: 17194628)
Nature. 2006 Jan 26;439(7075):470-4. (PMID: 16340960)
Nat Cell Biol. 2021 Jul;23(7):733-744. (PMID: 34155381)
Sci Signal. 2010 Oct 26;3(145):pe38. (PMID: 20978236)
Cell Rep. 2023 Feb 28;42(2):112093. (PMID: 36773292)
Development. 2009 Feb;136(3):483-93. (PMID: 19141677)
Development. 2014 Aug;141(16):3222-32. (PMID: 25063455)
PLoS Genet. 2016 Feb 04;12(2):e1005822. (PMID: 26845150)
Nature. 2006 Jan 26;439(7075):475-9. (PMID: 16340959)
Gastroenterology. 2011 Apr;140(4):1230-1240.e1-7. (PMID: 21238454)
J Cell Biol. 2008 Aug 25;182(4):801-15. (PMID: 18725542)
Nat Rev Mol Cell Biol. 2016 Nov;17(11):722-735. (PMID: 27507209)
Cell. 1998 Oct 30;95(3):331-41. (PMID: 9814704)
Development. 1994 Feb;120(2):347-60. (PMID: 8149913)
PLoS Genet. 2017 Jun 29;13(6):e1006854. (PMID: 28662029)
Development. 2019 Feb 1;146(3):. (PMID: 30709911)
Science. 2015 Nov 20;350(6263):. (PMID: 26586765)
Dev Cell. 2011 Aug 16;21(2):245-56. (PMID: 21839919)
Cell Stem Cell. 2011 Feb 4;8(2):188-99. (PMID: 21295275)
Nature. 2005 Jun 16;435(7044):959-63. (PMID: 15959515)
Science. 2017 May 5;356(6337):. (PMID: 28386027)
Development. 1998 Aug;125(16):3037-48. (PMID: 9671578)
Stem Cells. 2011 Mar;29(3):486-95. (PMID: 21425411)
Development. 2018 Mar 14;145(6):. (PMID: 29467242)
EMBO J. 2006 Jan 11;25(1):232-43. (PMID: 16362035)
Curr Biol. 2004 Mar 23;14(6):458-66. (PMID: 15043810)
J Cell Sci. 2006 Apr 1;119(Pt 7):1361-70. (PMID: 16537648)
J Mol Biol. 1996 Jan 26;255(3):387-400. (PMID: 8568884)
Cell Rep. 2019 Dec 10;29(11):3636-3651.e3. (PMID: 31825841)
Cell Stem Cell. 2022 Sep 1;29(9):1366-1381.e9. (PMID: 36055192)
Development. 2012 Feb;139(3):488-97. (PMID: 22190634)
EMBO J. 1999 Apr 15;18(8):2208-17. (PMID: 10205174)
Rouxs Arch Dev Biol. 1992 Jun;201(4):194-220. (PMID: 28305845)
Substance Nomenclature: 0 (Receptors, Notch)
0 (Drosophila Proteins)
0 (Wnt Proteins)
0 (Receptors, G-Protein-Coupled)
0 (N protein, Drosophila)
Entry Date(s): Date Created: 20251203 Date Completed: 20251203 Latest Revision: 20251206
Update Code: 20251206
PubMed Central ID: PMC12674121
DOI: 10.1126/sciadv.ady7272
PMID: 41337595
Datenbank: MEDLINE
Beschreibung
Abstract:The specification of intestinal stem cells (ISCs) during development is critical for maintaining intestinal homeostasis. However, the mechanisms underlying this process remain elusive. Here, by counting and tracing ISC in Drosophila pupal midgut, we show that ISCs are specified within a narrow 12-hour developmental window, with ~150 ISCs emerging from a pool of ~6000 intestinal epithelial cells. Single-cell sequencing revealed the involvement of Notch and Wnt signaling, with genetic experiments demonstrating that ISC specification requires both Notch suppression and Wnt activation. Furthermore, we showed that Wnt signaling is activated in discrete spatial domains, and Notch-mediated lateral inhibition specifies ISCs in these Wnt-active zones, achieving a ratio of ~1/40. Notably, Notch suppression also promoted the specification of Lgr5 <sup>+</sup> progenitors in the mouse embryonic intestine. Together, our data show that Wnt activation defines niches permissive for ISC fate, whereas Notch suppression licenses fate commitment, a spatiotemporal coordination conserved from insects to mammals.
ISSN:2375-2548
DOI:10.1126/sciadv.ady7272