The effect of background music on the recognition memory of spoken sentences.
Saved in:
| Title: | The effect of background music on the recognition memory of spoken sentences. |
|---|---|
| Authors: | Opheij E; Centre for Language Studies, Radboud University, Postbus 9103, 6500 HD, Nijmegen, The Netherlands., Brouwer S; Centre for Language Studies, Radboud University, Postbus 9103, 6500 HD, Nijmegen, The Netherlands. susanne.brouwer@ru.nl. |
| Source: | Attention, perception & psychophysics [Atten Percept Psychophys] 2025 Dec 02; Vol. 88 (1), pp. 21. Date of Electronic Publication: 2025 Dec 02. |
| Publication Type: | Journal Article |
| Language: | English |
| Journal Info: | Publisher: Springer Country of Publication: United States NLM ID: 101495384 Publication Model: Electronic Cited Medium: Internet ISSN: 1943-393X (Electronic) Linking ISSN: 19433921 NLM ISO Abbreviation: Atten Percept Psychophys Subsets: MEDLINE |
| Imprint Name(s): | Publication: 2011- : New York : Springer Original Publication: Austin, Tex. : Psychonomic Society |
| MeSH Terms: | Music* , Recognition, Psychology* , Speech Perception* , Semantics* , Attention*, Humans ; Male ; Female ; Young Adult ; Adult ; Cues ; Mental Recall ; Adolescent ; Reaction Time |
| Abstract: | Competing Interests: Declarations. Ethics approval: This study was approved by the Ethics Assessment Committee Humanities (ETC-GW 2020-1791). Consent to participate/publish: Informed consent was obtained from all individual participants included in the study. Competing interests: The authors have no competing interests to declare that are relevant to the content of this article. The aim of this study is to investigate whether individuals can use background music as a facilitative cue for sentence recognition by testing if the music is stored in memory along with sentences. It focuses on the context congruency effect, especially encoding specificity and context-dependent memory. Sixty native Dutch participants were tested on a continuous recognition memory paradigm in which Dutch sentences were presented in background music and repeated with the same or different music after a lag of four, eight, or 16 items. The results demonstrated a recognition benefit for sentences presented in the same background music during both encoding and retrieval (congruent condition), compared to sentences accompanied by different background music at encoding and retrieval (incongruent condition). In addition, sentence recognition accuracy decreased with increasing lag. Taken together, these results demonstrate that hearing sentences in the same background music has a beneficial effect on recognition memory, suggesting integral processing of sentences and background music in memory. (© 2025. The Psychonomic Society, Inc.) |
| References: | Anderson, S. A., & Fuller, G. B. (2010). Effect of music on reading comprehension of junior high school students. School Psychology Quarterly, 25(3), 178–187. https://doi.org/10.1037/a0021213. (PMID: 10.1037/a0021213) Audacity Team (2020). Audacity®: Free Audio Editor and Recorder (2.3.3) [Software]. Retrieved from https://www.audacityteam.org/. Baddeley, A. (1992). Working memory. Science, 255, 556–559. https://doi.org/10.1126/science.1736359. (PMID: 10.1126/science.17363591736359) Balch, W. R., Bowman, K., & Mohler, L. A. (1992). Music-dependent memory in immediate and delayed word recall. Memory & Cognition, 20(1), 21–28. https://doi.org/10.3758/BF03208250. (PMID: 10.3758/BF03208250) Bamford, J., & Wilson, I. (1979). Methodological considerations and practical aspects of the BKB sentence lists. In J. Bench & J. Bamford (Eds.), Speech-hearing Tests and the Spoken Language of Hearing-impaired Children (pp. 146–187). Academic Press. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01. (PMID: 10.18637/jss.v067.i01) Bench, J., Kowal, A., & Bamford, J. (1979). The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. British Journal of Audiology, 13, 108–112. https://doi.org/10.3109/03005367909078884. (PMID: 10.3109/03005367909078884486816) Bobrow, S. A. (1970). Memory for words in sentences. Journal of Verbal Learning and Verbal Behavior, 9(4), 363–372. https://doi.org/10.1016/S0022-5371(70)80074-3. (PMID: 10.1016/S0022-5371(70)80074-3) Boersma, P. (2001). PRAAT, a system for doing phonetics by computer. Glot International, 5(9), 341–345. Bonhage, C. E., Fiebach, C. J., Bahlmann, J., & Mueller, J. L. (2014). Brain signature of working memory for sentence structure: Enriched encoding and facilitated maintenance. Journal of Cognitive Neuroscience, 26(8), 1654–1671. https://doi.org/10.1162/jocn_a_00566. (PMID: 10.1162/jocn_a_0056624405186) Bowling, D. L., Gill, K., Choi, J. D., Prinz, J., & Purves, D. (2010). Major and minor music compared to excited and subdued speech. The Journal of the Acoustical Society of America, 127(1), 491–503. https://doi.org/10.1121/1.3268504. (PMID: 10.1121/1.326850420058994) Bradlow, A. R., Nygaard, L. C., & Pisoni, D. B. (1999). Effects of talker, rate, and amplitude variation on recognition memory for spoken words. Perception & Psychophysics, 61, 206–219. https://doi.org/10.3758/BF03206883. (PMID: 10.3758/BF03206883) Brener, R. (1940). An experimental investigation of memory span. Journal of Experimental Psychology, 26, 467–482. https://doi.org/10.1037/h0061096. (PMID: 10.1037/h0061096) Brouwer, S., Van Engen, K. J., Calandruccio, L., & Bradlow, A. R. (2012). Linguistic contributions to speech-on-speech masking for native and non-native listeners: Language familiarity and semantic content. The Journal of the Acoustical Society of America, 131(2), 1449–1464. https://doi.org/10.1121/1.3675943. (PMID: 10.1121/1.3675943223525163292614) Brouwer, S., Akkermans, N., Hendriks, L., van Uden, H., & Wilms, V. (2021). Lass Frooby Noo!” The interference of song lyrics and meaning on speech intelligibility. Journal of Experimental Psychology: Applied, 28(3), 576–58. https://doi.org/10.1037/xap0000368. (PMID: 10.1037/xap000036834323547) Brown, J. A., & Bidelman, G. M. (2022). Familiarity of background music modulates the cortical tracking of target speech at the “Cocktail Party.” Brain Sciences, 12(10), 1320. https://doi.org/10.3390/brainsci12101320. (PMID: 10.3390/brainsci12101320362912529599198) Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22(1), 77–94. https://doi.org/10.1017/s0140525x99001788. (PMID: 10.1017/s0140525x9900178811301522) Cherry, C. (1953). Some experiments on the recognition of speech with one and two ears. The Journal of the Acoustical Society of America, 25(5), 975–979. (PMID: 10.1121/1.1907229) Cecchetti, G., Herff, S. A., & Rohrmeier, M. A. (2021). Musical syntactic structure improves memory for melody: Evidence from theprocessing of ambiguous melodies. In: Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43). Cooper, A., & Bradlow, A. (2017). Talker and background noise specificity in spoken word recognition memory. Laboratory Phonology : Journal of the Association for Laboratory Phonology, 8(1), Article 29. https://doi.org/10.5334/labphon.99. (PMID: 10.5334/labphon.99) Cooper, A., Brouwer, S., & Bradlow, A. R. (2015). Interdependent processing and encoding of speech and concurrent background noise. Attention, Perception, & Psychophysics, 77(4), 1342–1357. https://doi.org/10.3758/s13414-015-0855-z. (PMID: 10.3758/s13414-015-0855-z) Craik, F. I. M., & Kirsner, K. (1974). The effect of speaker’s voice on word recognition. The Quarterly Journal of Experimental Psychology, 26, 274–284. https://doi.org/10.1080/14640747408400413. (PMID: 10.1080/14640747408400413) Creel, S. C., Aslin, R. N., & Tanenhaus, M. K. (2012). Word learning under adverse listening conditions: Context-specific recognition. Language and Cognitive Processes, 27, 1021–1038. https://doi.org/10.1080/01690965.2011.610597. (PMID: 10.1080/01690965.2011.610597) Dowling, W. J., Kwak, S., & Andrews, M. W. (1995). The time course of recognition of novel melodies. Perception & Psychophysics, 57, 136–149. https://doi.org/10.3758/BF03206500. (PMID: 10.3758/BF03206500) Echaide, C., Del Río, D., & Pacios, J. (2019). The differential effect of background music on memory for verbal and visuospatial information. The Journal of General Psychology, 146(4), 443–458. https://doi.org/10.1080/00221309.2019.1602023. (PMID: 10.1080/00221309.2019.160202331033419) Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 1316, 87–104. https://doi.org/10.1111/nyas.12406. (PMID: 10.1111/nyas.12406246972424285949) Goldinger, S. D. (1998). Echoes of echoes?: An episodic theory of lexical access. Psychological Review, 105, 251–279. https://doi.org/10.1037/0033-295X.105.2.251. (PMID: 10.1037/0033-295X.105.2.2519577239) Godden, D. R., & Baddeley, A. D. (1975). Context‐dependent memory in two natural environments: On land and underwater. British Journal of Psychology, 66(3), 325–331. https://doi.org/10.1111/j.2044-8295.1975.tb01468.x. Grant, H. M., Bredahl, L. C., Clay, J., Ferrie, J., Groves, J. E., McDorman, T. A., & Dark, V. J. (1998). Context-dependent memory for meaningful material: Information for students. Applied Cognitive Psychology, 12(6), 617-623. Hagiwara, R. (1997). Dialect variation and formant frequency: The American English vowels revisited. Journal of the Acoustical Society of America, 102, 655–658. https://doi.org/10.1121/1.419712. (PMID: 10.1121/1.419712) Hallam, S., Price, J., & Katsarou, G. (2002). The effects of background music on primary school pupils’ task performance. Educational Studies, 28(2), 111–122. https://doi.org/10.1080/03055690220124551. (PMID: 10.1080/03055690220124551) Halle, M. (1985). Speculations about the representation of words in memory. In Phonetic Linguistics, edited by V. A. Fromkin (Academic, New York), pp. 101-104. Herff, S. A., Dean, R. T., & Schaal, N. K. (2020). Context effects of background babbling on memory for melodies. Musicae Scientiae, 24(1), 96–112. https://doi.org/10.1177/1029864918779415. (PMID: 10.1177/1029864918779415) Herff, S. A., Finkensiep, C., Harasim, D., Cecchetti, G., & Rorhmeier, M. A. (2021). Hierarchical syntactic structure predicts listeners’ sequence completion in music. Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43). Retrieved from https://escholarship.org/uc/item/9w44g4x1. Herff, S. A., Olsen, K. N., & Dean, R. T. (2018). Resilient memory for melodies: The number of intervening melodies does not influence novel melody recognition. Quarterly Journal of Experimental Psychology, 71(5), 1150–1171. https://doi.org/10.1080/17470218.2017.1318932. (PMID: 10.1080/17470218.2017.1318932) Isarida, T. K., Kubota, T., Nakajima, S., & Isarida, T. (2017). Reexamination of mood-mediation hypothesis of background-music-dependent effects in free recall. The Quarterly Journal of Experimental Psychology, 70(3), 533–543. https://doi.org/10.1080/17470218.2016.1138975. (PMID: 10.1080/17470218.2016.113897526821817) Jefferies, E., Lambon Ralph, M. A., & Baddeley, A. D. (2004). Automatic and controlled processing in sentence recall: The role of long-term and working memory. Journal of Memory and Language, 51(4), 623–643. https://doi.org/10.1016/j.jml.2004.07.005. (PMID: 10.1016/j.jml.2004.07.005) Johnson, K. (2006). Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. Journal of Phonetics, 34, 485–499. https://doi.org/10.1016/j.wocn.2005.08.004. (PMID: 10.1016/j.wocn.2005.08.004) Kämpfe, J., Sedlmeier, P., & Renkewitz, F. (2010). The impact of background music on adult listeners: A meta-analysis. Psychology of Music, 39(4), 424–448. https://doi.org/10.1177/0305735610376261. (PMID: 10.1177/0305735610376261) Koeritzer, M. A., Rogers, C. S., Van Engen, K. J., & Peelle, J. E. (2018). The impact of age, background noise, semantic ambiguity, and hearing loss on recognition memory for spoken sentences. Journal of Speech, Language, and Hearing Research, 61(3), 740–751. https://doi.org/10.1044/2017_JSLHR-H-17-0077. (PMID: 10.1044/2017_JSLHR-H-17-0077294504935963044) Ladefoged, P., & Broadbent, D. E. (1957). Information conveyed by vowels. Journal of the Acoustical Society of America, 29, 98–104. https://doi.org/10.1121/1.1908694. (PMID: 10.1121/1.1908694) Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339–354. (PMID: 10.1037/0096-3445.133.3.33915355143) Lerdahl, F., & Jackendoff, R. S. (1983). A Generative Theory of Tonal Music. Reissue, with a new preface. MIT press. Logic Pro. (2013). Logic Pro X (10.0.0) [Software]. Apple. https://www.apple.com/logic-pro/. Macmillan, N. A., & Creelman, C. (2005). Detection theory. Lawrence Erlbaum. Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: Estimating sensitivity from average hit and false-alarm rates. Psychological Bulletin, 98(1), 185–199. https://doi.org/10.1037/0033-2909.98.1.185. (PMID: 10.1037/0033-2909.98.1.1854034817) Mullennix, J. W., & Pisoni, D. B. (1990). Stimulus variability and processing dependencies in speech perception. Perception & Psychophysics, 47, 379–390. https://doi.org/10.3758/BF03210878. (PMID: 10.3758/BF03210878) Munson, B., McDonald, E. C., DeBoe, N. L., & White, A. R. (2006). The acoustic and perceptual bases of judgments of women and men’s sexual orientation from read speech. Journal of Phonetics, 34(2), 202–240. https://doi.org/10.1016/j.wocn.2005.05.003. (PMID: 10.1016/j.wocn.2005.05.003) Palmeri, T. J., Goldinger, S. D., & Pisoni, D. B. (1993). Episodic encoding of voice attributes and recognition memory for spoken words and voices. Journal of Experimental Psychology: Learning, Memory & Cognition, 18, 915–930. Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In J. Bybee & P. Hopper (Eds.), Frequency effects and the emergence of lexical structure (pp. 137-157). Amsterdam, The Netherlands: Benjamins. Pool, M. M., Koolstra, C. M., & Van der Voort, T. H. (2003). The impact of background radio and television on high school students’ homework performance. Journal of Communication, 53(1), 74–87. https://doi.org/10.1111/j.1460-2466.2003.tb03006.x. (PMID: 10.1111/j.1460-2466.2003.tb03006.x) Pufahl, A., & Samuel, A. G. (2014). How lexical is the lexicon? Evidence for integrated auditory memory representations. Cognitive Psychology, 70, 1–30. https://doi.org/10.1016/j.cogpsych.2014.01.001. (PMID: 10.1016/j.cogpsych.2014.01.001244804534048665) Qualtrics (Version July 2021) [Software]. (2005). Qualtrics, Provo, UT, USA. Retrieved from https://www.qualtrics.com. Quené, H., & van Delft, L. (2010). Non-native durational patterns decrease speech intelligibility. Speech Communication, 52, 911–918. https://doi.org/10.1016/j.specom.2010.03.005. (PMID: 10.1016/j.specom.2010.03.005) RStudio Team (2024). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ . Potter, M. C., & Lombardi, L. (1990). Regeneration in the short-term recall of sentences. Journal of Memory and Language, 29, 633–654. https://doi.org/10.1016/0749-596X(90)90042-X. (PMID: 10.1016/0749-596X(90)90042-X) Schaal, N. K., Kloos, S., Pollok, B., & Herff, S. A. (2021). The influence of anodal transcranial direct current stimulation over the right auditory cortex on interference effects in memory for melodies. Brain and Cognition, 154, Article 105798. https://doi.org/10.1016/j.bandc.2021.105798. (PMID: 10.1016/j.bandc.2021.10579834530286) Scharenborg, O., & Larson, M. (2018). The conversation continues: The effect of lyrics and music complexity of background music on spoken-word recognition. In B. Yegnanarayana (Ed.), Proceedings of Interspeech 2018 (pp. 2280–2284). International Speech Communication Association. https://doi.org/10.21437/Interspeech.2018-1088. Schellenberg, E. G., & Weiss, M. W. (2013). Music and cognitive abilities. In D. Deutsch (Ed.), The Psychology of Music (3 rd ed., pp. 499–550). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-381460-9.00012-2. Schellenberg, E. G., & Habashi, P. (2015). Remembering the melody and timbre, forgetting the key and tempo. Memory & Cognition, 43, 1021–1031. https://doi.org/10.3758/s13421-015-0519-1. Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6(1), 156–163. https://doi.org/10.1016/S0022-5371(67)80067-7. (PMID: 10.1016/S0022-5371(67)80067-7) Shepard, R. N., & Teghtsoonian, M. (1961). Retention of information under conditions approaching a steady state. Journal of Experimental Psychology, 62, 302–309. https://doi.org/10.1037/h0048606. (PMID: 10.1037/h004860613911664) Shih, Y. N., Huang, R. H., & Chiang, H. Y. (2012). Background music: Effects on attention performance. Work, 42(4), 573–578. https://doi.org/10.3233/WOR-2012-1410. (PMID: 10.3233/WOR-2012-141022523045) Smith, S. M. (1985). Background music and context-dependent memory. The American Journal of Psychology, 98(4), 591–603. https://doi.org/10.2307/1422512. (PMID: 10.2307/1422512) Summerfield, Q., Haggard, M., Foster, J., & Gray, S. (1984). Perceiving vowels from uniform spectra: Phonetic exploration of an auditory aftereffect. Perception & Psychophysics, 35, 203–213. https://doi.org/10.3758/BF03205933. (PMID: 10.3758/BF03205933) Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373. https://doi.org/10.1037/h0020071. (PMID: 10.1037/h0020071) Uddén, J., de Jesus Dias Martins, M., Zuidema, W., & Tecumseh Fitch, W. (2020). Hierarchical structure in sequence processing: How to measure it and determine its neural implementation. Topics in Cognitive Science, 12(3), 910–924. https://doi.org/10.1111/tops.12442. (PMID: 10.1111/tops.1244231364310) Wingfield, A. (2016). Evolution of models of working memory and cognitive resources. Ear and Hearing, 37(Suppl 1), 35S-43S. (PMID: 10.1097/AUD.000000000000031027355768) Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441–517. https://doi.org/10.1006/jmla.2002.2864. (PMID: 10.1006/jmla.2002.2864) Zekveld, A. A., Rudner, M., Johnsrude, I. S., & Rönnberg, J. (2013). The effects of working memory capacity and semantic cues on the intelligibility of speech in noise. The Journal of the Acoustical Society of America, 134(3), 2225–2234. https://doi.org/10.1121/1.4817926. (PMID: 10.1121/1.481792623967952) |
| Contributed Indexing: | Keywords: Background music; Context congruency effect; Recognition memory; Speech perception |
| Entry Date(s): | Date Created: 20251202 Date Completed: 20251202 Latest Revision: 20251202 |
| Update Code: | 20251203 |
| DOI: | 10.3758/s13414-025-03159-7 |
| PMID: | 41331213 |
| Database: | MEDLINE |
| Abstract: | Competing Interests: Declarations. Ethics approval: This study was approved by the Ethics Assessment Committee Humanities (ETC-GW 2020-1791). Consent to participate/publish: Informed consent was obtained from all individual participants included in the study. Competing interests: The authors have no competing interests to declare that are relevant to the content of this article.<br />The aim of this study is to investigate whether individuals can use background music as a facilitative cue for sentence recognition by testing if the music is stored in memory along with sentences. It focuses on the context congruency effect, especially encoding specificity and context-dependent memory. Sixty native Dutch participants were tested on a continuous recognition memory paradigm in which Dutch sentences were presented in background music and repeated with the same or different music after a lag of four, eight, or 16 items. The results demonstrated a recognition benefit for sentences presented in the same background music during both encoding and retrieval (congruent condition), compared to sentences accompanied by different background music at encoding and retrieval (incongruent condition). In addition, sentence recognition accuracy decreased with increasing lag. Taken together, these results demonstrate that hearing sentences in the same background music has a beneficial effect on recognition memory, suggesting integral processing of sentences and background music in memory.<br /> (© 2025. The Psychonomic Society, Inc.) |
|---|---|
| ISSN: | 1943-393X |
| DOI: | 10.3758/s13414-025-03159-7 |
Full Text Finder
Nájsť tento článok vo Web of Science