Current Status on the Convergence of Artificial Intelligence and Formulation Development in Industry: A Review.

Uložené v:
Podrobná bibliografia
Názov: Current Status on the Convergence of Artificial Intelligence and Formulation Development in Industry: A Review.
Autori: Warke S; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec-67, S.A.S. Nagar, Punjab, 160062, India., Katari O; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec-67, S.A.S. Nagar, Punjab, 160062, India., Jain S; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec-67, S.A.S. Nagar, Punjab, 160062, India. sanyogjain@niper.ac.in.
Zdroj: AAPS PharmSciTech [AAPS PharmSciTech] 2025 Nov 26; Vol. 27 (1), pp. 44. Date of Electronic Publication: 2025 Nov 26.
Spôsob vydávania: Journal Article; Review
Jazyk: English
Informácie o časopise: Publisher: Springer Country of Publication: United States NLM ID: 100960111 Publication Model: Electronic Cited Medium: Internet ISSN: 1530-9932 (Electronic) Linking ISSN: 15309932 NLM ISO Abbreviation: AAPS PharmSciTech Subsets: MEDLINE
Imprint Name(s): Publication: New York : Springer
Original Publication: Arlington, VA : American Association of Pharmaceutical Scientists, c2000-
Výrazy zo slovníka MeSH: Artificial Intelligence*/trends , Drug Industry*/methods , Drug Industry*/trends , Drug Development*/methods , Drug Development*/trends , Drug Compounding*/methods, Humans ; Machine Learning ; Chemistry, Pharmaceutical/methods
Abstrakt: Competing Interests: Declarations. Conflict of interest: The authors report no financial interest that might pose a potential, perceived or real conflict of interest.
Since Pfizer developed the mRNA vaccine for COVID-19 by leveraging artificial intelligence (AI) for designing the vaccine, integrating AI and allied domains in the drug development process has escalated at an unimaginable rate. Owing to the complex and time-consuming process of drug development, many firms, including big pharma and medium-scale industries, are constantly looking for ways to reduce the time for providing lifesaving medications to patients in need without compromising the safety and efficacy of the product. Formulation of novel drug products in a pharmaceutical R&D and scaling up the process to a large-scale production involves a huge investment and an eye for detail in the intricacies of the processes. Intervention of AI and machine learning (ML) can solve many problems in this aspect. With the rise of Industry 4.0, the relative shift of industry towards process automation, accelerated development has become vital in all domains. The investments in R&D by the large pharmaceutical companies reached up to $190 bn in 2024, according to a report by IQVIA. There is a noted upsurge in investments in the domains interlinking AI and ML with pharmaceutical research. Pharmaceutical formulation development can excel in the early stages, and the productivity can witness a steady growth if AI and ML tools are utilized. Most of the research in this domain remains in the budding stages, and its adoption in the industry needs further refinement by delineating structured guidance from the experts and regulatory agencies. The current review speaks about the current studies reported in the arena of formulation development and also sheds light on some of the areas where the pharmaceutical product development on a larger scale can benefit from AI and ML.
(© 2025. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.)
References: Tamimi NAM, Ellis P. Drug Development: From Concept to Marketing! Nephron Clin Pract. 2009Aug 12;113(3):c125–31. (PMID: 1972992210.1159/000232592)
Chatterjee B, Steiner R, Kaul G. Industry perspective – what does industry need to accelerate drug product and process development? Pharm Res. 2024;41(1):7–11. (PMID: 3782176510.1007/s11095-023-03604-y)
Destro F, Barolo M. A review on the modernization of pharmaceutical development and manufacturing – trends, perspectives, and the role of mathematical modeling. Int J Pharm. 2022;620:121715. (PMID: 3536758010.1016/j.ijpharm.2022.121715)
Hariry RE, Barenji RV, Paradkar A. Towards Pharma 4.0 in clinical trials: a future-orientated perspective. Drug Discov Today. 2022;27(1):315–25. (PMID: 3453733110.1016/j.drudis.2021.09.002)
Sharma A, Kaur J, Singh I. Internet of things (IoT) in pharmaceutical manufacturing, warehousing, and supply chain management. SN Comput Sci. 2020;1(4):232. (PMID: 10.1007/s42979-020-00248-2)
Benko A, Sik Lányi C. History of Artificial Intelligence: In: Khosrow-Pour, D.B.A. M, editor. Encyclopedia of Information Science and Technology, Second Edition [Internet]. IGI Global; 2009 [cited 2025 Mar 9]. p. 1759–62. Available from: http://services.igi-global.com/resolvedoi/resolve.aspx? https://doi.org/10.4018/978-1-60566-026-4.ch276 .
Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Bioscience Reports. 2017 Aug 31;37(4):BSR20160180.
Chavda VP, Vihol D, Patel A, Redwan EM, Uversky VN. Introduction to Bioinformatics, AI, and ML for Pharmaceuticals. In: Chavda V, Anand K, Apostolopoulos V, editors. Bioinformatics Tools for Pharmaceutical Drug Product Development [Internet]. 1st ed. Wiley; 2023 [cited 2025 Mar 9]. p. 1–18. Available from: https://onlinelibrary.wiley.com/doi/ https://doi.org/10.1002/9781119865728.ch1 .
Mannila H. Data mining: machine learning, statistics, and databases. In: Proceedings of 8th International Conference on Scientific and Statistical Data Base Management [Internet]. Stockholm, Sweden: IEEE Comput. Soc. Press; 1996 [cited 2025 Mar 9]. p. 2–9. Available from: http://ieeexplore.ieee.org/document/505910/ .
Ongsulee P. Artificial intelligence, machine learning and deep learning. In: 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE) [Internet]. Bangkok, Thailand: IEEE; 2017 [cited 2025 Mar 9]. p. 1–6. Available from: https://ieeexplore.ieee.org/document/8259629/ .
Deng L, Yu D. Deep learning: methods and applications. FNT in Signal Processing. 2014;7(3–4):197–387. (PMID: 10.1561/2000000039)
Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717–27. (PMID: 1081571410.1016/S0731-7085(99)00272-1)
Wu Y, Feng J. Development and application of artificial neural network. Wireless Pers Commun. 2018;102(2):1645–56. (PMID: 10.1007/s11277-017-5224-x)
Bourquin J, Schmidli H, Van Hoogevest P, Leuenberger H. Basic concepts of artificial neural networks (ANN) modeling in the application to pharmaceutical development. Pharm Dev Technol. 1997;2(2):95–109. (PMID: 955243610.3109/10837459709022615)
Grant P. A new approach to diabetic control: fuzzy logic and insulin pump technology. Med Eng Phys. 2007;29(7):824–7. (PMID: 1705293910.1016/j.medengphy.2006.08.014)
Zhang R, Sun Y, Chen Y. Enhancing targeted tumor treatment: a novel fuzzy logic framework for precision drug delivery strategy selection. Comput Biol Med. 2024;180:109008. (PMID: 3914684110.1016/j.compbiomed.2024.109008)
Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques. Informatica [Internet]. 2007 [cited 2025 Mar 9];31(3). Available from: https://www.informatica.si/index.php/informatica/article/view/148 .
Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16(6):321–32. (PMID: 25948244520430210.1038/nrg3920)
Suriyaamporn P, Pamornpathomkul B, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Opanasopit P. The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A Review. AAPS PharmSciTech. 2024Aug 15;25(6):188. (PMID: 3914795210.1208/s12249-024-02901-y)
Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Mach Learn. 2001;42(1/2):177–96. (PMID: 10.1023/A:1007617005950)
Dougherty J, Kohavi R, Sahami M. Supervised and Unsupervised Discretization of Continuous Features. In: Machine Learning Proceedings 1995 [Internet]. Elsevier; 1995 [cited 2025 Mar 9]. p. 194–202. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781558603776500323 .
Marsland S. Machine Learning: An Algorithmic Perspective [Internet]. 2nd ed. Chapman and Hall/CRC; 2014 [cited 2025 Mar 9]. Available from: https://www.taylorfrancis.com/books/9781466583337 .
Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN COMPUT SCI. 2021;2(3):160. (PMID: 33778771798309110.1007/s42979-021-00592-x)
Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947–99. (PMID: 3439331710.1007/s10462-021-10058-4)
Bannigan P, Aldeghi M, Bao Z, Häse F, Aspuru-Guzik A, Allen C. Machine learning directed drug formulation development. Adv Drug Deliv Rev. 2021;175:113806. (PMID: 3401995910.1016/j.addr.2021.05.016)
Bellini V, Cascella M, Cutugno F, Russo M, Lanza R, Compagnone C, et al. Understanding basic principles of Artificial Intelligence: a practical guide for intensivists: Basic Principles of Artificial Intelligence. Acta Biomedica Atenei Parmensis. 2022Oct 26;93(5):e2022297.
Friederich P, Krenn M, Tamblyn I, Aspuru-Guzik A. Scientific intuition inspired by machine learning-generated hypotheses. Mach Learn: Sci Technol. 2021Jun 1;2(2):025027.
Fu L, Jia G, Liu Z, Pang X, Cui Y. The applications and advances of artificial intelligence in drug regulation: a global perspective. Acta Pharm Sin B. 2025Jan 1;15(1):1–14. (PMID: 4004190310.1016/j.apsb.2024.11.006)
Wang N, Dong J, Ouyang D. AI-directed formulation strategy design initiates rational drug development. J Control Release. 2025;378:619–36. (PMID: 3971921510.1016/j.jconrel.2024.12.043)
Merck: Innovation powered by digital and data. [cited 2025 Sep 14]; Available from: https://www.nature.com/articles/d42473-024-00195-z .
AI at Merck: A 360-degree perspective [Internet]. 2024 Dec 5 [cited 2025 Sep 14]. Available from: https://www.merckgroup.com/content/dam/web/corporate/non-images/press-kits/ai360/Fact-Sheet-AI360-at-Merck.pdf .
Absci Announces Research Collaboration With Merck [Internet]. Absci Announces Research Collaboration With Merck. [cited 2025 Sep 14]. Available from: https://www.merck.com/bdl_item/absci-announces-research-collaboration-with-merck/ .
Buntz B. Merck and Culmination Bio’s data alliance to unravel disease biology [Internet]. Drug Discovery and Development. 2024 [cited 2025 Sep 14]. Available from: https://www.drugdiscoverytrends.com/decoding-disease-with-data-merck-culmination-bios-quest-to-fundamentally-understand-the-biology-through-ai/.
Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: a review. AAPS J. 2022;24(1):19. (PMID: 3498457910.1208/s12248-021-00644-3)
Artificial Intelligence: On a mission to Make Clinical Drug Development Faster and Smarter | Pfizer [Internet]. [cited 2025 Sep 7]. Available from: https://www.pfizer.com/news/articles/artificial_intelligence_on_a_mission_to_make_clinical_drug_development_faster_and_smarter .
MRNA Artificial Intelligence in Vaccine Development [Internet]. [cited 2025 Sep 7]. Available from: https://www.pfizer.com/news/articles/how_a_novel_incubation_sandbox_helped_speed_up_data_analysis_in_pfizer_s_covid_19_vaccine_trial .
Mostello G. Pfizer strengthens AI collaboration with XtalPi to accelerate drug discovery [Internet]. FirstWord Pharma; 2025 Jun [cited 2025 Sep 15]. Available from: https://firstwordpharma.com/story/5977180 .
Xue B, Yang Q, Zhang Q, Wan X, Fang D, Lin X, et al. Development and Comprehensive Benchmark of a High-Quality AMBER-Consistent Small Molecule Force Field with Broad Chemical Space Coverage for Molecular Modeling and Free Energy Calculation. J Chem Theory Comput. 2024Jan 23;20(2):799–818. (PMID: 3815747510.1021/acs.jctc.3c00920)
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023Jul 10;15(7):1916. (PMID: 375141021038576310.3390/pharmaceutics15071916)
Güler GK, Eroğlu H, Öner L. Development and formulation of floating tablet formulation containing rosiglitazone maleate using artificial neural network. J Drug Deliv Sci Technol. 2017;39:385–97. (PMID: 10.1016/j.jddst.2017.04.029)
Gupta D, Biswas AA, Chand Sahu R, Arora S, Kumar D, Agrawal AK. Advancing pharmaceutical intelligence via computationally prognosticating the in-vitro parameters of fast disintegration tablets using machine learning models. Eur J Pharm Biopharm. 2024;204:114508. (PMID: 3930620110.1016/j.ejpb.2024.114508)
Jain S, Shah RP. Drug-Excipient Compatibility Study Through a Novel Vial-in-Vial Experimental Setup: A Benchmark Study. AAPS PharmSciTech. 2023May 10;24(5):117. (PMID: 3716079010.1208/s12249-023-02573-0)
Rowe RC, Roberts RJ. Expert Systems in Pharmaceutical Product Development. In: Encyclopedia of Pharmaceutical Science and Technology, Six Volume Set (Print). 4th ed. CRC Press; 2013.
Dong J, Gao H, Ouyang D. PharmSD: a novel AI-based computational platform for solid dispersion formulation design. Int J Pharm. 2021;604:120705. (PMID: 3399159510.1016/j.ijpharm.2021.120705)
Wang N, Sun H, Dong J, Ouyang D. PharmDE: a new expert system for drug-excipient compatibility evaluation. Int J Pharm. 2021;607:120962. (PMID: 3433981210.1016/j.ijpharm.2021.120962)
Amidon GL, Lennernäs H, Shah VP, Crison JR. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm Res. 1995Mar 1;12(3):413–20. (PMID: 761753010.1023/A:1016212804288)
Faller B, Ertl P. Computational approaches to determine drug solubility. Adv Drug Deliv Rev. 2007;59(7):533–45. (PMID: 1758870310.1016/j.addr.2007.05.005)
Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou M, et al. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: state‐of‐the‐arts and future directions. Med Res Rev. 2021;41(3):1427–73. (PMID: 3329567610.1002/med.21764)
Yuan Y, Zheng F, Zhan CG. Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J. 2018;20(3):54. (PMID: 2956457610.1208/s12248-018-0215-8)
Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm. 2018;535(1–2):379–92. (PMID: 2912842310.1016/j.ijpharm.2017.10.051)
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75. (PMID: 1806188710.1016/j.drudis.2007.09.005)
Mendyk A, Jachowicz R. Neural network as a decision support system in the development of pharmaceutical formulation—focus on solid dispersions. Expert Syst Appl. 2005;28(2):285–94. (PMID: 10.1016/j.eswa.2004.10.007)
Papadimitriou SA, Barmpalexis P, Karavas E, Bikiaris DN. Optimizing the ability of PVP/PEG mixtures to be used as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique using artificial neural networks: I. Eur J Pharm Biopharm. 2012Sep 1;82(1):175–86. (PMID: 2273226610.1016/j.ejpb.2012.06.003)
Medarević DP, Kleinebudde P, Djuriš J, Djurić Z, Ibrić S. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Dev Ind Pharm. 2016Mar 3;42(3):389–402. (PMID: 2606553410.3109/03639045.2015.1054831)
Han R, Xiong H, Ye Z, Yang Y, Huang T, Jing Q, et al. Predicting physical stability of solid dispersions by machine learning techniques. J Control Release. 2019;311–312:16–25. (PMID: 3146582410.1016/j.jconrel.2019.08.030)
Patil MR, Ganorkar SB, Patil AS, Shirkhedkar AA, Surana SJ. Hydrotropic Solubilization in Pharmaceutical Analysis: Origin, Evolution, Cumulative Trend and Precise Applications. Crit Rev Anal Chem. 2021Jun 3;51(3):278–88. (PMID: 3200051010.1080/10408347.2020.1718484)
Damiati SA, Martini LG, Smith NW, Lawrence MJ, Barlow DJ. Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin. Int J Pharm. 2017;530(1–2):99–106. (PMID: 2873324310.1016/j.ijpharm.2017.07.048)
Heng T, Yang D, Wang R, Zhang L, Lu Y, Du G. Progress in Research on Artificial Intelligence Applied to Polymorphism and Cocrystal Prediction. ACS Omega. 2021Jun 22;6(24):15543–50. (PMID: 34179597822322610.1021/acsomega.1c01330)
Vidal-Henriquez E, Holder T, Lee NF, Pompe C, Teese MG. Machine learning driven acceleration of biopharmaceutical formulation development using Excipient Prediction Software (ExPreSo) [Internet]. 2025 [cited 2025 Apr 5]. Available from: http://biorxiv.org/lookup/doi/ https://doi.org/10.1101/2025.02.12.637685 .
Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M. Advances in artificial intelligence for drug delivery and development: a comprehensive review. Comput Biol Med. 2024;178:108702. (PMID: 3887839710.1016/j.compbiomed.2024.108702)
Veeraraghavan VP, Daniel S, Dasari AK, Aileni KR, Patil C, Patil SR. Harnessing artificial intelligence for predictive modelling in oral oncology: opportunities, challenges, and clinical perspectives. Oral Oncol Rep. 2024;11:100591. (PMID: 10.1016/j.oor.2024.100591)
Chen S, Li T, Yang L, Zhai F, Jiang X, Xiang R, et al. Artificial intelligence-driven prediction of multiple drug interactions. Briefings in Bioinformatics. 2022 Nov 19;23(6):bbac427.
Zhang Y, Deng Z, Xu X, Feng Y, Junliang S. Application of Artificial Intelligence in Drug-Drug Interactions Prediction: A Review. J Chem Inf Model. 2024Apr 8;64(7):2158–73. (PMID: 3745840010.1021/acs.jcim.3c00582)
Qaid TS, Mazaar H, Alqahtani MS, Raweh AA, Alakwaa W. Deep sequence modelling for predicting COVID-19 mRNA vaccine degradation. PeerJ Computer Science. 2021Jun;22(7):e597. (PMID: 10.7717/peerj-cs.597)
Keshavarzi Arshadi A, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front Artif Intell. 2020Aug;18(3):65. (PMID: 10.3389/frai.2020.00065)
Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res. 2021;11(2):345–52. (PMID: 33585972788223610.1007/s13346-021-00929-2)
Hoseini B, Jaafari MR, Golabpour A, Rahmatinejad Z, Karimi M, Eslami S. Machine Learning-Driven Advancements in Liposomal Formulations for Targeted Drug Delivery: A Narrative Literature Review. CDD [Internet]. 2024 Jun 27 [cited 2025 Mar 10];21. Available from: https://www.eurekaselect.com/231366/article .
Aumklad P, Suriyaamporn P, Panomsuk S, Pamornpathomkul B, Opanasopit P. Artificial intelligence-aided rational design and prediction model for progesterone-loaded self-microemulsifying drug delivery system formulations. SEHS. 2024Jul;18:24050002. (PMID: 10.69598/sehs.18.24050002)
Yang Y, Ye Z, Su Y, Zhao Q, Li X, Ouyang D. Deep learning for in vitro prediction of pharmaceutical formulations. Acta Pharm Sin B. 2019;9(1):177–85. (PMID: 3076678910.1016/j.apsb.2018.09.010)
Burgess DJ, Wright JC. An Introduction to Long Acting Injections and Implants. In: Wright JC, Burgess DJ, editors. Long Acting Injections and Implants [Internet]. Boston, MA: Springer US; 2012 [cited 2025 Mar 8]. p. 1–9. Available from: https://link.springer.com/ https://doi.org/10.1007/978-1-4614-0554-2_1 .
Bannigan P, Bao Z, Hickman RJ, Aldeghi M, Häse F, Aspuru-Guzik A, et al. Machine learning models to accelerate the design of polymeric long-acting injectables. Nat Commun. 2023Jan 10;14(1):35. (PMID: 36627280983201110.1038/s41467-022-35343-w)
Han R, Ye Z, Zhang Y, Cheng Y, Zheng Y, Ouyang D. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches. Asian J Pharm Sci. 2023;18(3):100811. (PMID: 3727492310232664)
Wang W, Feng S, Ye Z, Gao H, Lin J, Ouyang D. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm Sin B. 2022;12(6):2950–62. (PMID: 3575527110.1016/j.apsb.2021.11.021)
Amasya G, Badilli U, Aksu B, Tarimci N. Quality by design case study 1: design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion — solvent evaporation method. Eur J Pharm Sci. 2016;84:92–102. (PMID: 2678059310.1016/j.ejps.2016.01.003)
Xu Y, Ma S, Cui H, Chen J, Xu S, Gong F, et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat Commun. 2024Jul 26;15(1):6305. (PMID: 390603051128225010.1038/s41467-024-50619-z)
Zhang S. System and method for computing drug controlled release performance using images. US11081212B2, 2021.
Feuerriegel S, Hartmann J, Janiesch C, Zschech P. Generative AI. Bus Inf Syst Eng. 2024;66(1):111–26. (PMID: 10.1007/s12599-023-00834-7)
Hornick T, Mao C, Koynov A, Yawman P, Thool P, Salish K, et al. In silico formulation optimization and particle engineering of pharmaceutical products using a generative artificial intelligence structure synthesis method. Nat Commun. 2024Nov 7;15(1):9622. (PMID: 395112371154411010.1038/s41467-024-54011-9)
Chen YC, Shishikura S, Moseson DE, Ignatovich AJ, Lomeo J, Zhu A, et al. Control of drug release kinetics from hot-melt extruded drug-loaded polycaprolactone matrices. J Control Release. 2023;359:373–83. (PMID: 3729572910.1016/j.jconrel.2023.05.049)
Clark AG, Wang R, Qin Y, Wang Y, Zhu A, Lomeo J, et al. Assessing microstructural critical quality attributes in PLGA microspheres by FIB-SEM analytics. J Control Release. 2022;349:580–91. (PMID: 3580332610.1016/j.jconrel.2022.06.066)
Trnka H, Wu JX, Van De Weert M, Grohganz H, Rantanen J. Fuzzy logic-based expert system for evaluating cake quality of freeze-dried formulations. J Pharm Sci. 2013;102(12):4364–74. (PMID: 2425828310.1002/jps.23745)
Kashani-Asadi-Jafari F, Aftab A, Ghaemmaghami S. A machine learning framework for predicting entrapment efficiency in niosomal particles. Int J Pharm. 2022;627:122203. (PMID: 3611669010.1016/j.ijpharm.2022.122203)
Aguilar-Díaz JE, García-Montoya E, Suñe-Negre JM, Pérez-Lozano P, Miñarro M, Ticó JR. Predicting orally disintegrating tablets formulations of ibuprophen tablets: an application of the new SeDeM-ODT expert system. Eur J Pharm Biopharm. 2012;80(3):638–48. (PMID: 2224515610.1016/j.ejpb.2011.12.012)
Chalortham N, Ruangrajitpakorn T, Supnithi T, Leesawat P. OXPIRT: Ontology-based eXpert system for Production of a generic Immediate Release Tablet. In: Formulation Tools for Pharmaceutical Development [Internet]. Elsevier; 2013 [cited 2025 Mar 8]. p. 203–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781907568992500086.
Wilson WI, Peng Y, Augsburger LL. Generalization of a prototype intelligent hybrid system for hard gelatin capsule formulation development. AAPS PharmSciTech. 2005Sep;6(3):E449–57. (PMID: 16354004275039010.1208/pt060356)
Mendyk A, Szlȩk J, Jachowicz R. ME_expert 2.0: a heuristic decision support system for microemulsions formulation development. In: Formulation Tools for Pharmaceutical Development [Internet]. Elsevier; 2013 [cited 2025 Mar 8]. p. 39–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781907568992500037 .
Zhao F, Lu J, Jin X, Wang Z, Sun Y, Gao D, et al. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf B Biointerfaces. 2018;172:288–97. (PMID: 3017309610.1016/j.colsurfb.2018.08.046)
Merzlikine A, Abramov YA, Kowsz SJ, Thomas VH, Mano T. Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Int J Pharm. 2011;418(2):207–16. (PMID: 2149719010.1016/j.ijpharm.2011.03.065)
He Y, Ye Z, Liu X, Wei Z, Qiu F, Li HF, et al. Can machine learning predict drug nanocrystals? J Control Release. 2020;322:274–85. (PMID: 3223451110.1016/j.jconrel.2020.03.043)
Yu A, Sun D, Li BV, Yu LX. Bioequivalence History. In: Yu LX, Li BV, editors. FDA Bioequivalence Standards [Internet]. New York, NY: Springer New York; 2014 [cited 2025 Apr 6]. p. 1–27. (AAPS Advances in the Pharmaceutical Sciences Series; vol. 13). Available from: https://link.springer.com/ https://doi.org/10.1007/978-1-4939-1252-0_1.
Danielak D, Myslitska D, Winiarski M, Paszkowska J, Dobosz J, Staniszewska M, et al. Compare and PASS − Fast screening of oral dosage forms for bioequivalence probability with the COMPASS software. Int J Pharm. 2025;670:125123. (PMID: 4075812510.1016/j.ijpharm.2024.125123)
Xuan D, Choe SY. Pharmacokinetic/Pharmacodynamic Modeling and Simulations in Drug Development. In: Encyclopedia of Pharmaceutical Science and Technology, Six Volume Set (Print). 4th ed. CRC Press; 2013.
Lin Z, Fisher JW. Chapter 1 - A history and recent efforts of selected physiologically based pharmacokinetic modeling topics. In: Fisher JW, Gearhart JM, Lin Z, editors. Physiologically Based Pharmacokinetic (PBPK) Modeling [Internet]. Academic Press; 2020 [cited 2025 Jul 25]. p. 1–26. Available from: https://www.sciencedirect.com/science/article/pii/B9780128185964000011.
Poggesi I, Snoeys J, Van Peer A. The successes and failures of physiologically based pharmacokinetic modeling: there is room for improvement. Expert Opinion on Drug Metabolism & Toxicology. 2014;10(5):631–5. (PMID: 10.1517/17425255.2014.888058)
Li Y, Wang Z, Li Y, Du J, Gao X, Li Y, et al. A combination of machine learning and PBPK modeling approach for pharmacokinetics prediction of small molecules in humans. Pharm Res. 2024;41(7):1369–79. (PMID: 389183091153484710.1007/s11095-024-03725-y)
Chou WC, Lin Z. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicol Sci. 2023Jan 31;191(1):1–14. (PMID: 3615615610.1093/toxsci/kfac101)
Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, et al. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J Control Release. 2023Sep;1(361):53–63. (PMID: 10.1016/j.jconrel.2023.07.040)
Chou WC, Cheng YH, Riviere JE, Monteiro-Riviere NA, Kreyling WG, Lin Z. Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats. Part Fibre Toxicol [Internet]. 2022 Dec [cited 2025 Jul 26];19(1). Available from: https://particleandfibretoxicology.biomedcentral.com/articles/ https://doi.org/10.1186/s12989-022-00489-4 .
Lin Z, Monteiro-Riviere NA, Kannan R, Riviere JE. A Computational Framework for Interspecies Pharmacokinetics, Exposure and Toxicity Assessment of Gold Nanoparticles. Nanomedicine. 2016Jan 1;11(2):107–19. (PMID: 2665371510.2217/nnm.15.177)
Lin Z, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology. 2016Feb 7;10(2):162–72. (PMID: 25961857)
Zhu J, Xiong P, Wang W, Lu T, Ouyang D. Integrating artificial intelligence and physiologically based pharmacokinetic modeling to predict in vitro and in vivo fate of amorphous solid dispersions. J Control Release. 2025;386:114123. (PMID: 4082540010.1016/j.jconrel.2025.114123)
Manzano T, Fernàndez C, Ruiz T, Richard H. Artificial intelligence algorithm qualification: a quality by design approach to apply artificial intelligence in Pharma. PDA J Pharm Sci Technol. 2021;75(1):100–18. (PMID: 3281732310.5731/pdajpst.2019.011338)
Dawoud MHS, Mannaa IS, Abdel-Daim A, Sweed NM. Integrating Artificial Intelligence with Quality by Design in the Formulation of Lecithin/Chitosan Nanoparticles of a Poorly Water-Soluble Drug. AAPS PharmSciTech. 2023Aug 8;24(6):169. (PMID: 3755242710.1208/s12249-023-02609-5)
Đuriš J, Kurćubić I, Ibrić S. Review of machine learning algorithms’ application in pharmaceutical technology. Arh Farm. 2021;71(4):302–17. (PMID: 10.5937/arhfarm71-32499)
Zagalo DM, Silva BMA, Silva C, Simões S, Sousa JJ. A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: a systematic review. J Drug Deliv Sci Technol. 2022;70:103207. (PMID: 10.1016/j.jddst.2022.103207)
Simões MF, Silva G, Pinto AC, Fonseca M, Silva NE, Pinto RMA, et al. Artificial neural networks applied to quality-by-design: from formulation development to clinical outcome. Eur J Pharm Biopharm. 2020;152:282–95. (PMID: 3244273610.1016/j.ejpb.2020.05.012)
Kim JY, Choi DH. Quality by design approach with multivariate analysis and artificial neural network models to understand and control excipient variability. J Pharm Investig. 2023;53(3):389–406. (PMID: 10.1007/s40005-022-00608-5)
Levin M, editor. Pharmaceutical Process Scale-Up [Internet]. 0 ed. CRC Press; 2001 [cited 2025 Mar 11]. Available from: https://www.taylorfrancis.com/books/9780824741969 .
Pandey P, Bharadwaj R, Chen X. Modeling of drug product manufacturing processes in the pharmaceutical industry. In: Predictive Modeling of Pharmaceutical Unit Operations [Internet]. Elsevier; 2017 [cited 2025 Mar 11]. p. 1–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081001547000016.
Huanbutta K, Burapapadh K, Kraisit P, Sriamornsak P, Ganokratanaa T, Suwanpitak K, et al. Artificial intelligence-driven pharmaceutical industry: a paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. Eur J Pharm Sci. 2024;203:106938. (PMID: 3941912910.1016/j.ejps.2024.106938)
PhD MM. Merck KGaA’s SMARTfacturing Ecosystem Vision [Internet]. GEN - Genetic Engineering and Biotechnology News. 2025 [cited 2025 Oct 6]. Available from: https://www.genengnews.com/topics/bioprocessing/merck-kgaas-smartfacturing-ecosystem-vision/ .
Khabbazi MR, Danielsson F, Massouh B, Lennartson B. Plug and produce — a review and future trend. Int J Adv Manuf Technol. 2024;134(9–10):3991–4014. (PMID: 10.1007/s00170-024-14379-w)
Mirakhori F, Niazi SK. Harnessing the AI/ML in Drug and Biological Products Discovery and Development: The Regulatory Perspective [Internet]. 2024 [cited 2025 Mar 11]. Available from: https://www.preprints.org/manuscript/202410.2510/v1.
Niazi S. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: the FDA perspectives. DDDT. 2023;Volume 17:2691–725. (PMID: 10.2147/DDDT.S424991)
Considerations for the Use of Artificial Intelligence to Support Regulatory Decision-Making for Drugs & Biologics - Guidance for Industry and Other Interested Parties. U.S. Food and Drug Administration; 2025.
Reflection paper on AI in medicinal product lifecycle [Internet]. European Medicines Agency (EMA); 2023. Available from: https://www.ema.europa.eu/en/news/reflection-paper-use-artificial-intelligence-lifecycle-medicines .
EFPIA position on the use of artificial intelligence in the medicinal product lifecycle. EFPIA; 2024.
Balcioğlu YS, Çelik AA, Altindağ E. A turning point in AI: Europe’s human-centric approach to technology regulation. Journal of Responsible Technology. 2025Sep;1(23):100128. (PMID: 10.1016/j.jrt.2025.100128)
Ethics and governance of artificial intelligence for health: Guidance on large multi-modal models [Internet]. WHO; [cited 2025 Oct 5]. Available from: https://www.who.int/publications/i/item/9789240084759 .
Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro P, Piñeiro Á, et al. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals. 2023Jun 18;16(6):891. (PMID: 373758381030289010.3390/ph16060891)
Johnson KB, Wei W, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86–93. (PMID: 3296101010.1111/cts.12884)
Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: a call for open science. Patterns. 2021;2(10):100347. (PMID: 34693373851500210.1016/j.patter.2021.100347)
Teo ZL, Thirunavukarasu AJ, Elangovan K, Cheng H, Moova P, Soetikno B, et al. Generative artificial intelligence in medicine. Nat Med. 2025;31(10):3270–82. (PMID: 4105344710.1038/s41591-025-03983-2)
Croatti A, Gabellini M, Montagna S, Ricci A. On the integration of agents and digital twins in healthcare. J Med Syst. 2020;44(9):161. (PMID: 32748066739968010.1007/s10916-020-01623-5)
Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024Jan 2;19(1):33–42. (PMID: 3788726610.1080/17460441.2023.2273839)
on behalf of the Swedish Digital Twin Consortium, Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, et al. Digital twins to personalize medicine. Genome Med. 2020 Dec;12(1):4.
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics. 2024Oct 14;16(10):1328. (PMID: 394586571151077810.3390/pharmaceutics16101328)
Adabala Viswa C, Bleys J, Leydon E, Shah B, Zurkiya D. Generative AI in the pharmaceutical industry: Moving from hype to reality [Internet]. McKinsey & Company; 2024 Jan [cited 2025 Sep 5] p. 1–23. Available from: https://www.mckinsey.com/industries/life-sciences/our-insights/generative-ai-in-the-pharmaceutical-industry-moving-from-hype-to-reality .
Gangwal A, Lavecchia A. Unleashing the power of generative AI in drug discovery. Drug Discov Today. 2024;29(6):103992. (PMID: 3866357910.1016/j.drudis.2024.103992)
Powell K. NVIDIA Generative AI Is Opening the Next Era of Drug Discovery and Design [Internet]. NVIDIA Blog. 2024 [cited 2025 Oct 7]. Available from: https://blogs.nvidia.com/blog/drug-discovery-bionemo-generative-ai/ .
Contributed Indexing: Keywords: algorithms; artificial intelligence; drug delivery systems; machine learning; pharmaceutical product development
Entry Date(s): Date Created: 20251126 Date Completed: 20251127 Latest Revision: 20251126
Update Code: 20251127
DOI: 10.1208/s12249-025-03296-0
PMID: 41299184
Databáza: MEDLINE
Popis
Abstrakt:Competing Interests: Declarations. Conflict of interest: The authors report no financial interest that might pose a potential, perceived or real conflict of interest.<br />Since Pfizer developed the mRNA vaccine for COVID-19 by leveraging artificial intelligence (AI) for designing the vaccine, integrating AI and allied domains in the drug development process has escalated at an unimaginable rate. Owing to the complex and time-consuming process of drug development, many firms, including big pharma and medium-scale industries, are constantly looking for ways to reduce the time for providing lifesaving medications to patients in need without compromising the safety and efficacy of the product. Formulation of novel drug products in a pharmaceutical R&D and scaling up the process to a large-scale production involves a huge investment and an eye for detail in the intricacies of the processes. Intervention of AI and machine learning (ML) can solve many problems in this aspect. With the rise of Industry 4.0, the relative shift of industry towards process automation, accelerated development has become vital in all domains. The investments in R&D by the large pharmaceutical companies reached up to $190 bn in 2024, according to a report by IQVIA. There is a noted upsurge in investments in the domains interlinking AI and ML with pharmaceutical research. Pharmaceutical formulation development can excel in the early stages, and the productivity can witness a steady growth if AI and ML tools are utilized. Most of the research in this domain remains in the budding stages, and its adoption in the industry needs further refinement by delineating structured guidance from the experts and regulatory agencies. The current review speaks about the current studies reported in the arena of formulation development and also sheds light on some of the areas where the pharmaceutical product development on a larger scale can benefit from AI and ML.<br /> (© 2025. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.)
ISSN:1530-9932
DOI:10.1208/s12249-025-03296-0