A General Food Chain Model for Bioaccumulation of Ciguatoxin into Herbivorous Fish in the Pacific Ocean Suggests Few Gambierdiscus Species Can Produce Poisonous Herbivores, and Even Fewer Can Produce Poisonous Higher Trophic Level Fish.

Uloženo v:
Podrobná bibliografie
Název: A General Food Chain Model for Bioaccumulation of Ciguatoxin into Herbivorous Fish in the Pacific Ocean Suggests Few Gambierdiscus Species Can Produce Poisonous Herbivores, and Even Fewer Can Produce Poisonous Higher Trophic Level Fish.
Autoři: Holmes MJ; Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia., Lewis RJ; Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
Zdroj: Toxins [Toxins (Basel)] 2025 Oct 25; Vol. 17 (11). Date of Electronic Publication: 2025 Oct 25.
Způsob vydávání: Journal Article
Jazyk: English
Informace o časopise: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101530765 Publication Model: Electronic Cited Medium: Internet ISSN: 2072-6651 (Electronic) Linking ISSN: 20726651 NLM ISO Abbreviation: Toxins (Basel) Subsets: MEDLINE
Imprint Name(s): Original Publication: Basel : MDPI
Výrazy ze slovníku MeSH: Ciguatoxins*/metabolism , Ciguatoxins*/toxicity , Food Chain* , Fishes*/metabolism , Dinoflagellida*, Animals ; Pacific Ocean ; Herbivory ; Bioaccumulation ; Ciguatera Poisoning ; Models, Biological
Abstrakt: We adapt previous conceptual and numerical models of ciguateric food chains for the bioaccumulation of Pacific-ciguatoxin-1 (P-CTX-1) to a general model for bioaccumulation of P-CTX3C by parrotfish ( Scarus frenatus , S. niger , and S. psittacus ) that feed by scraping turf algae, and surgeonfish ( Naso unicornis ) that mostly feed on macroalgae. We also include the Indian Ocean parrotfish Chlorurus sordidus as a model for an excavator feeding parrotfish and include comparisons with the detritivorous surgeonfish Ctenochaetus striatus that brush-feeds on turf algae. Our food chain model suggests that, of the Gambierdiscus and Fukuyoa species so far analysed for ciguatoxin (CTX) production from the Pacific, only G. polynesiensis produces sufficient P-CTX3C to consistently produce parrotfish or N. unicornis with poisonous flesh. Our model suggests that insufficient CTX would accumulate into the flesh of parrotfish or N. unicornis to become poisonous from ingesting benthic dinoflagellates producing ≤0.03 pg P-CTX3C eq./cell, except from extended feeding times on high-density blooms and in the absence of significant depuration of CTX. Apart from G. polynesiensis , only G. belizeanus and possibly G. silvae and G. australes are thought to produce >0.03 pg P-CTX3C eq./cell in the Pacific. However, with relatively low maximum concentrations of ≤0.1 pg P-CTX3C eq./cell it is likely that their contribution is minimal. Our model also suggests that the differences between the area of turf algae grazed by parrotfish and similar sized C. striatus results in greater accumulation of CTX by this surgeonfish. This makes C. striatus a higher ciguatera risk than similar sized parrotfish, either directly for human consumption or as prey for higher trophic level fishes, consistent with poisoning data from Polynesia. It also suggests the possibility that C. striatus could bioaccumulate sufficient CTX to become mildly poisonous from feeding on lower toxicity Gambierdiscus or Fukuyoa species known to produce ≥0.02 P-CTX3C eq./cell. This indicates the potential for at least two food chain pathways to produce ciguateric herbivorous fishes, depending on the CTX concentrations produced by resident Gambierdiscus or Fukuyoa on a reef and the grazing capacity of herbivorous fish. However, only G. polynesiensis appears to produce sufficient P-CTX3C to consistently accumulate in food chains to produce higher trophic level fishes that cause ciguatera in the Pacific. We incorporate CTX depuration into our model to explore scenarios where mildly poisonous parrotfish or N. unicornis ingest CTX at a rate that is balanced by depuration to estimate the Gambierdiscus / Fukuyoa densities and CTX concentrations required for these fish to remain poisonous on a reef.
References: J Eukaryot Microbiol. 2016 Jul;63(4):481-97. (PMID: 26686980)
Harmful Algae. 2022 Jun;115:102230. (PMID: 35623687)
Ambio. 2020 Jan;49(1):130-143. (PMID: 30843168)
Toxins (Basel). 2021 Aug 11;13(8):. (PMID: 34437435)
Harmful Algae. 2025 May;145:102859. (PMID: 40324860)
Toxicon. 1991;29(6):761-75. (PMID: 1926177)
Biosci Biotechnol Biochem. 1996 Dec;60(12):2103-5. (PMID: 9026141)
Protist. 2019 Dec;170(6):125699. (PMID: 31770639)
Chem Rec. 2001;1(3):228-42. (PMID: 11895121)
Toxicon. 2010 Oct;56(5):674-90. (PMID: 19505491)
Toxicon. 2014 Jun;84:41-50. (PMID: 24699216)
Harmful Algae. 2021 Nov;109:102107. (PMID: 34815020)
Animals (Basel). 2021 Jan 19;11(1):. (PMID: 33477985)
Mar Drugs. 2018 Jan 01;16(1):. (PMID: 29301247)
Toxicon. 1988;26(9):795-801. (PMID: 3201485)
Int J Food Microbiol. 2000 Nov 1;61(2-3):91-125. (PMID: 11078162)
Mar Drugs. 2021 Nov 17;19(11):. (PMID: 34822515)
J Phycol. 2023 Jun;59(3):496-517. (PMID: 36866508)
Comp Biochem Physiol C Comp Pharmacol Toxicol. 1993 Nov;106(3):615-28. (PMID: 7905799)
Toxins (Basel). 2019 Dec 17;11(12):. (PMID: 31861242)
Mar Drugs. 2022 May 25;20(6):. (PMID: 35736151)
Toxicon. 2010 Oct;56(5):739-50. (PMID: 19540257)
Toxins (Basel). 2021 Jul 23;13(8):. (PMID: 34437386)
R Soc Open Sci. 2018 Jan 31;5(1):171111. (PMID: 29410825)
Toxins (Basel). 2022 Aug 03;14(8):. (PMID: 36006196)
Glob Chang Biol. 2025 Aug;31(8):e70438. (PMID: 40831447)
Toxins (Basel). 2020 Oct 31;12(11):. (PMID: 33142836)
Environ Sci Technol. 2020 Apr 7;54(7):4475-4483. (PMID: 32142610)
Toxicon. 1991;29(9):1115-27. (PMID: 1665604)
Mar Drugs. 2024 Mar 02;22(3):. (PMID: 38535460)
Trends Ecol Evol. 2012 Jul;27(7):404-13. (PMID: 22658876)
Harmful Algae. 2023 Nov;129:102525. (PMID: 37951623)
PLoS One. 2017 Oct 18;12(10):e0185776. (PMID: 29045489)
J Exp Mar Biol Ecol. 2021 Mar;536:. (PMID: 35530638)
Toxins (Basel). 2025 Jul 30;17(8):. (PMID: 40864055)
Toxicon. 2010 Oct;56(5):668-73. (PMID: 19538985)
Harmful Algae. 2022 Dec;120:102351. (PMID: 36470606)
Toxins (Basel). 2025 Feb 20;17(3):. (PMID: 40137873)
Toxins (Basel). 2017 Jun 29;9(7):. (PMID: 28661447)
Toxicon. 2007 Oct;50(5):612-26. (PMID: 17631928)
PLoS One. 2025 Jun 30;20(6):e0327594. (PMID: 40587512)
Toxins (Basel). 2022 Mar 15;14(3):. (PMID: 35324705)
Sci Total Environ. 2025 Sep 10;994:179990. (PMID: 40628156)
Toxins (Basel). 2025 Apr 11;17(4):. (PMID: 40278692)
Harmful Algae. 2016 May;55:295. (PMID: 28073543)
Harmful Algae. 2024 Jan;131:102561. (PMID: 38212086)
Harmful Algae. 2018 Apr;74:78-97. (PMID: 29724345)
Ecology. 2013 Jun;94(6):1347-58. (PMID: 23923498)
Chemosphere. 2011 Jun;84(1):117-23. (PMID: 21397295)
Nat Ecol Evol. 2023 Jan;7(1):71-81. (PMID: 36631667)
Chemosphere. 2023 Jul;330:138659. (PMID: 37044143)
Environ Sci Technol. 2013 Dec 17;47(24):14070-9. (PMID: 24228863)
Toxins (Basel). 2020 Feb 21;12(2):. (PMID: 32098095)
Toxins (Basel). 2020 Dec 04;12(12):. (PMID: 33291542)
Harmful Algae. 2016 Dec;60:1-10. (PMID: 28073552)
Ecotoxicol Environ Saf. 2020 Nov;204:111004. (PMID: 32768745)
Harmful Algae. 2025 Aug;147:102882. (PMID: 40449987)
Toxicon. 2010 Oct;56(5):656-61. (PMID: 19520098)
Ecol Evol. 2018 Mar 26;8(8):4108-4119. (PMID: 29721284)
Sci Rep. 2015 Sep 08;5:13830. (PMID: 26345733)
Ecol Evol. 2018 Aug 29;8(18):9503-9515. (PMID: 30377518)
Mar Environ Res. 2025 Apr;206:107031. (PMID: 40024170)
Mar Drugs. 2023 Dec 25;22(1):. (PMID: 38248639)
Toxicon. 2002 Sep;40(9):1347-53. (PMID: 12220721)
Anal Chem. 2011 Dec 1;83(23):8886-91. (PMID: 22010820)
Food Chem Toxicol. 2022 Feb;160:112812. (PMID: 35026329)
Mar Pollut Bull. 2018 Dec;137:430-443. (PMID: 30503452)
Med J Aust. 1986 Dec 1-15;145(11-12):584-90. (PMID: 2432386)
Harmful Algae. 2025 Nov;149:102938. (PMID: 40935527)
Aquat Toxicol. 2018 Jul;200:257-265. (PMID: 29803968)
Toxicon. 2002 Jun;40(6):685-93. (PMID: 12175604)
Toxins (Basel). 2021 Nov 01;13(11):. (PMID: 34822558)
Toxicon. 1987;25(10):1125-7. (PMID: 2447683)
Harmful Algae. 2022 Jan;111:102163. (PMID: 35016767)
Environ Sci Technol. 2024 Jun 4;58(22):9815-9827. (PMID: 38768015)
Toxins (Basel). 2017 Jun 26;9(7):. (PMID: 28672845)
Toxicol Rep. 2017 Jun 15;4:328-334. (PMID: 28959656)
Toxicon. 2010 Oct;56(5):711-30. (PMID: 20561539)
Toxicon. 2024 Jan;237:107536. (PMID: 38043714)
Toxicon. 1992 Aug;30(8):915-9. (PMID: 1523683)
Nature. 2004 Jun 24;429(6994):827-33. (PMID: 15215854)
Harmful Algae. 2017 Mar;63:173-183. (PMID: 28366392)
Harmful Algae. 2024 Jan;131:102562. (PMID: 38212087)
Toxins (Basel). 2023 Mar 21;15(3):. (PMID: 36977121)
Toxins (Basel). 2020 Jan 15;12(1):. (PMID: 31952334)
Mar Drugs. 2017 Jun 30;15(7):. (PMID: 28665362)
Harmful Algae. 2017 Jul;67:107-118. (PMID: 28755713)
Contributed Indexing: Keywords: Chlorurus; Ctenochaetus; Fukuyoa; Gambierdiscus; Naso; Scarus; ciguatera; ciguatoxin; depuration; food chain model; parrotfish; surgeonfish
Substance Nomenclature: 11050-21-8 (Ciguatoxins)
Entry Date(s): Date Created: 20251126 Date Completed: 20251126 Latest Revision: 20251128
Update Code: 20251128
PubMed Central ID: PMC12656673
DOI: 10.3390/toxins17110526
PMID: 41295841
Databáze: MEDLINE
Popis
Abstrakt:We adapt previous conceptual and numerical models of ciguateric food chains for the bioaccumulation of Pacific-ciguatoxin-1 (P-CTX-1) to a general model for bioaccumulation of P-CTX3C by parrotfish ( Scarus frenatus , S. niger , and S. psittacus ) that feed by scraping turf algae, and surgeonfish ( Naso unicornis ) that mostly feed on macroalgae. We also include the Indian Ocean parrotfish Chlorurus sordidus as a model for an excavator feeding parrotfish and include comparisons with the detritivorous surgeonfish Ctenochaetus striatus that brush-feeds on turf algae. Our food chain model suggests that, of the Gambierdiscus and Fukuyoa species so far analysed for ciguatoxin (CTX) production from the Pacific, only G. polynesiensis produces sufficient P-CTX3C to consistently produce parrotfish or N. unicornis with poisonous flesh. Our model suggests that insufficient CTX would accumulate into the flesh of parrotfish or N. unicornis to become poisonous from ingesting benthic dinoflagellates producing ≤0.03 pg P-CTX3C eq./cell, except from extended feeding times on high-density blooms and in the absence of significant depuration of CTX. Apart from G. polynesiensis , only G. belizeanus and possibly G. silvae and G. australes are thought to produce >0.03 pg P-CTX3C eq./cell in the Pacific. However, with relatively low maximum concentrations of ≤0.1 pg P-CTX3C eq./cell it is likely that their contribution is minimal. Our model also suggests that the differences between the area of turf algae grazed by parrotfish and similar sized C. striatus results in greater accumulation of CTX by this surgeonfish. This makes C. striatus a higher ciguatera risk than similar sized parrotfish, either directly for human consumption or as prey for higher trophic level fishes, consistent with poisoning data from Polynesia. It also suggests the possibility that C. striatus could bioaccumulate sufficient CTX to become mildly poisonous from feeding on lower toxicity Gambierdiscus or Fukuyoa species known to produce ≥0.02 P-CTX3C eq./cell. This indicates the potential for at least two food chain pathways to produce ciguateric herbivorous fishes, depending on the CTX concentrations produced by resident Gambierdiscus or Fukuyoa on a reef and the grazing capacity of herbivorous fish. However, only G. polynesiensis appears to produce sufficient P-CTX3C to consistently accumulate in food chains to produce higher trophic level fishes that cause ciguatera in the Pacific. We incorporate CTX depuration into our model to explore scenarios where mildly poisonous parrotfish or N. unicornis ingest CTX at a rate that is balanced by depuration to estimate the Gambierdiscus / Fukuyoa densities and CTX concentrations required for these fish to remain poisonous on a reef.
ISSN:2072-6651
DOI:10.3390/toxins17110526