Geographics and bacterial networks differently shape the acquired and latent global sewage resistomes.
Uložené v:
| Názov: | Geographics and bacterial networks differently shape the acquired and latent global sewage resistomes. |
|---|---|
| Autori: | Martiny HM; Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark. pmun@food.dtu.dk., Munk P; Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark. hanmar@food.dtu.dk., Fuschi A; Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy., Becsei Á; Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary., Pyrounakis N; Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark., Brinch C; Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark., Larsson DGJ; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, and Centre for Antibiotic Resistance Research in Gothenburg, Gothenburg, Sweden., Koopmans M; Erasmus Medical Centre, Rotterdam, The Netherlands., Remondini D; Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy., Csabai I; Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary., Aarestrup FM; Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark. |
| Korporácia: | Global Sewage Consortium |
| Zdroj: | Nature communications [Nat Commun] 2025 Nov 21; Vol. 16 (1), pp. 10278. Date of Electronic Publication: 2025 Nov 21. |
| Spôsob vydávania: | Journal Article |
| Jazyk: | English |
| Informácie o časopise: | Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: [London] : Nature Pub. Group |
| Výrazy zo slovníka MeSH: | Sewage*/microbiology , Bacteria*/genetics , Bacteria*/drug effects , Bacteria*/classification , Bacteria*/isolation & purification , Drug Resistance, Bacterial*/genetics, Metagenomics ; Genes, Bacterial/genetics ; North America ; Geography ; Cities ; Anti-Bacterial Agents/pharmacology |
| Abstrakt: | Competing Interests: Competing interests: The authors declare no competing interests. Antimicrobial resistance genes (ARGs) have rapidly emerged and spread globally, but the pathways driving their spread remain poorly understood. We analyzed 1240 sewage samples from 351 cities across 111 countries, comparing ARGs known to be mobilized with those identified through functional metagenomics (FG). FG ARGs showed stronger associations with bacterial taxa than the acquired ARGs. Network analyses further confirmed this and showed potential for source attribution of both known and novel ARGs. The FG resistome was more evenly dispersed globally, whereas the acquired resistome followed distinct geographical patterns. City-wise distance-decay analyses revealed that the FG ARGs showed significant decay within countries but not across regions or globally. In contrast, acquired ARGs showed decay at both national and regional scales. At the variant level, both ARG groups had significant national and regional distance-decay effects, but only FG ARGs at a global scale. Additionally, we observed stronger distance effects in Sub-Saharan Africa and East Asia compared to North America. Our findings suggest that differential selection and niche competition, rather than dispersal, shape the global resistome patterns. A limited number of bacterial taxa may act as reservoirs of latent FG ARGs, highlighting the need of targeted surveillance to mitigate future resistance threats. (© 2025. The Author(s).) |
| References: | Nat Rev Microbiol. 2022 May;20(5):257-269. (PMID: 34737424) Front Microbiol. 2013 Jun 07;4:145. (PMID: 23760651) Microbiome. 2022 Dec 5;10(1):212. (PMID: 36464731) Nucleic Acids Res. 2023 Jul 5;51(W1):W493-W500. (PMID: 37207327) Nat Commun. 2025 Nov 21;16(1):10278. (PMID: 41271719) ISME J. 2021 Jan;15(1):270-281. (PMID: 32963346) Nature. 2004 Dec 9;432(7018):750-3. (PMID: 15592412) Commun Biol. 2024 Jun 8;7(1):706. (PMID: 38851788) F1000Res. 2021 Jan 18;10:33. (PMID: 34035898) Nat Rev Microbiol. 2015 Feb;13(2):116-23. (PMID: 25534811) Environ Int. 2023 Aug;178:108089. (PMID: 37441817) Clin Infect Dis. 2013 Sep;57(5):704-10. (PMID: 23723195) J Hazard Mater. 2022 Feb 15;424(Pt C):127407. (PMID: 34629195) Nat Rev Genet. 2024 Feb;25(2):142-157. (PMID: 37749210) Nature. 2006 Dec 21;444(7122):1027-31. (PMID: 17183312) Nat Commun. 2024 Aug 30;15(1):7551. (PMID: 39215001) Proc Natl Acad Sci U S A. 2011 May 10;108(19):7850-4. (PMID: 21518859) Oecologia. 2001 Oct;129(2):271-280. (PMID: 28547606) J Infect Dis. 2021 Jun 16;223(12 Suppl 2):S209-S213. (PMID: 33326581) Genomics Inform. 2019 Mar;17(1):e6. (PMID: 30929407) Lancet. 2022 Feb 12;399(10325):629-655. (PMID: 35065702) Lancet. 2024 Sep 28;404(10459):1199-1226. (PMID: 39299261) Bioinformatics. 2024 Mar 4;40(3):. (PMID: 38377397) PLoS One. 2012;7(4):e34953. (PMID: 22509370) Nature. 2010 Mar 4;464(7285):59-65. (PMID: 20203603) Bioinformatics. 2012 Oct 1;28(19):2520-2. (PMID: 22908215) Microbiome. 2023 Mar 8;11(1):44. (PMID: 36882798) Front Microbiol. 2017 Nov 15;8:2224. (PMID: 29187837) Bioinformatics. 2018 Sep 1;34(17):i884-i890. (PMID: 30423086) Bioinformatics. 2010 Oct 1;26(19):2460-1. (PMID: 20709691) Commun Biol. 2023 Jul 8;6(1):700. (PMID: 37422584) Science. 2001 Sep 28;293(5539):2413-8. (PMID: 11577228) ISME J. 2022 Jan;16(1):159-167. (PMID: 34282284) Nature. 2011 Aug 31;477(7365):457-61. (PMID: 21881561) mSystems. 2016 Oct 18;1(5):. (PMID: 27822556) Nat Microbiol. 2025 Feb;10(2):313-331. (PMID: 39805953) Nat Rev Microbiol. 2006 Feb;4(2):102-12. (PMID: 16415926) BMC Microbiol. 2017 May 22;17(1):120. (PMID: 28532414) Microbiome. 2018 Feb 23;6(1):40. (PMID: 29471872) Nutrients. 2020 May 19;12(5):. (PMID: 32438689) Genome Res. 2017 May;27(5):824-834. (PMID: 28298430) J Am Chem Soc. 2010 Jan 20;132(2):816-23. (PMID: 20000704) J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500. (PMID: 32780112) Nat Commun. 2019 Mar 8;10(1):1124. (PMID: 30850636) Gigascience. 2022 Jul 30;11:. (PMID: 35906888) Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016114. (PMID: 19658781) Cancer Res. 1967 Feb;27(2):209-20. (PMID: 6018555) Commun Biol. 2023 Mar 25;6(1):321. (PMID: 36966231) Lancet Planet Health. 2018 Sep;2(9):e398-e405. (PMID: 30177008) Lancet Planet Health. 2023 Nov;7(11):e888-e899. (PMID: 37940209) Microbiol Spectr. 2024 Jan 11;12(1):e0241323. (PMID: 38084973) Nat Commun. 2022 Dec 1;13(1):7251. (PMID: 36456547) BMC Bioinformatics. 2018 Aug 29;19(1):307. (PMID: 30157759) Front Microbiol. 2015 Oct 29;6:1196. (PMID: 26579102) Science. 2009 Aug 28;325(5944):1128-1131. (PMID: 19713526) Ecol Lett. 2008 Sep;11(9):904-17. (PMID: 18494792) Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2761-6. (PMID: 17296935) Science. 2005 Jun 10;308(5728):1635-8. (PMID: 15831718) mSystems. 2022 Apr 26;7(2):e0010522. (PMID: 35343801) J Environ Sci (China). 2023 May;127:421-430. (PMID: 36522074) Nat Biotechnol. 2021 Jan;39(1):105-114. (PMID: 32690973) |
| Grant Information: | NNF16OC0021856: Global Surveillance of Antimicrobial Resistance Novo Nordisk Fonden (Novo Nordisk Foundation); 874735 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science) |
| Contributed Indexing: | Investigator: DG Joakim Larsson; M Koopmans; N Zaatout; C Rees; G Jiang; J Shi; B Benka; F Allerberger; S Koeberl-Jelovcan; KH Abdulla; AB Thani; A Begum; C Worrell; TV Dougnon; F Soria; N Mazalica; T Rahube; AF Martins; CA Tagliati; LCR Souza; A Nzouankeu; MA Rehman; J Gauthier; RC Levesque; SD Workman; C Yost; AA Nakashima; A Opazo; G Gonzales; Y Yu; P Donado-Godoy; T Youssouf; PC Rivera-Navarro; M Jergovic; J Hrenovic; R Karpiskova; JK Coulibaly; W Calero-Cáceres; M Abouelnaga; AM Hokajärvi; A Heikinheimo; SL Guyader; A Nitsche; A Brinkmann; S Schubert; T Berendonk; U Klümper; E Bonah; SA Sefa; A Camilleri; CK Setsoafia Saba; VB Sedor; K Mellou; T Sideroglou; C Kotzamanidis; JB Henriksen; M Møller; TR Thorsteinsdottir; AAM Hatha; S Mohammad; B Shamurad; HA Faraj; D Morris; L O'Connor; J Moran-Gilad; R Orletti; G Rosa; M Iaconelli; A Battisti; L Decastelli; M Napoleoni; A Cesare; G Corno; J Avsejenko; GM Matar; C Penny; LH Samison; DL Banda; H Rajandas; S Parimannan; MV Haber; SJ Santchurn; J Carrillo-Reyes; JO Sanchez-Lara; R Arredondo-Hernández; A Vujacic; D Djurovic; P Pal; CJA Campos; I Pattis; S Chambers; GJ Jeunen; C Elikwu; O Osuolale; M Ndahi; O Abiodun-Adewusi; A Ekhosuehi; A Afolayan; K Fashae; MK Aworh; AO Ahmed; IA Raufu; I Odetokun; SM Chiroma; C Mitchell; R Holmstad; N Weiler; D Wasyl; M Zając; E Cardoso; C Manaia; MJ Campos; HG Hur; MJ Song; S Yoon; O Burduniuc; P Hong; V Radosavljevic; AA Cokro; D Gavacová; M Trkov; RH Abubakar; K Keddy; I Martínez-Alcalá; M Cerdà-Cuéllar; A Cañas; F Gonzalez-Candelas; YA Sabiel; TV der Heijden; YP Hong; JJ Medardus; RP Nagassar; C Kürekci; P McNamara; L Wong; E Fuhrmeister; JS Meschke; N Beck; A Maile-Moskowitz; J Thomsen; O Obaidi; B Paterson; A Leonard; L Zhang; K Chau |
| Substance Nomenclature: | 0 (Sewage) 0 (Anti-Bacterial Agents) |
| Entry Date(s): | Date Created: 20251121 Date Completed: 20251121 Latest Revision: 20251124 |
| Update Code: | 20251124 |
| PubMed Central ID: | PMC12639157 |
| DOI: | 10.1038/s41467-025-66070-7 |
| PMID: | 41271719 |
| Databáza: | MEDLINE |
| Abstrakt: | Competing Interests: Competing interests: The authors declare no competing interests.<br />Antimicrobial resistance genes (ARGs) have rapidly emerged and spread globally, but the pathways driving their spread remain poorly understood. We analyzed 1240 sewage samples from 351 cities across 111 countries, comparing ARGs known to be mobilized with those identified through functional metagenomics (FG). FG ARGs showed stronger associations with bacterial taxa than the acquired ARGs. Network analyses further confirmed this and showed potential for source attribution of both known and novel ARGs. The FG resistome was more evenly dispersed globally, whereas the acquired resistome followed distinct geographical patterns. City-wise distance-decay analyses revealed that the FG ARGs showed significant decay within countries but not across regions or globally. In contrast, acquired ARGs showed decay at both national and regional scales. At the variant level, both ARG groups had significant national and regional distance-decay effects, but only FG ARGs at a global scale. Additionally, we observed stronger distance effects in Sub-Saharan Africa and East Asia compared to North America. Our findings suggest that differential selection and niche competition, rather than dispersal, shape the global resistome patterns. A limited number of bacterial taxa may act as reservoirs of latent FG ARGs, highlighting the need of targeted surveillance to mitigate future resistance threats.<br /> (© 2025. The Author(s).) |
|---|---|
| ISSN: | 2041-1723 |
| DOI: | 10.1038/s41467-025-66070-7 |
Full Text Finder
Nájsť tento článok vo Web of Science