Warming Fluctuations Strengthen the Photo-Phagotrophic Coupling in Mixoplanktonic Protists.

Saved in:
Bibliographic Details
Title: Warming Fluctuations Strengthen the Photo-Phagotrophic Coupling in Mixoplanktonic Protists.
Authors: Cabrerizo MJ; Departmento de Ecología & Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, 18071, Spain. mjc@ugr.es.; Estación de Fotobiología Playa Unión, Casilla de Correos 15, Rawson, Chubut, 9103, Argentina. mjc@ugr.es., González-Olalla JM; Departmento de Ecología & Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, 18071, Spain.; Departamento de Biología, Universidad de Cádiz, Cádiz, 11510, Spain., Medina-Sánchez JM; Departmento de Ecología & Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, 18071, Spain., Vila-Duplá M; Departmento de Ecología & Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, 18071, Spain., Carrillo P; Departmento de Ecología & Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, 18071, Spain.
Source: Microbial ecology [Microb Ecol] 2025 Nov 18; Vol. 88 (1), pp. 138. Date of Electronic Publication: 2025 Nov 18.
Publication Type: Journal Article
Language: English
Journal Info: Publisher: Springer-Verlag Country of Publication: United States NLM ID: 7500663 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-184X (Electronic) Linking ISSN: 00953628 NLM ISO Abbreviation: Microb Ecol Subsets: MEDLINE
Imprint Name(s): Original Publication: New York, Springer-Verlag.
MeSH Terms: Global Warming* , Phytoplankton*/growth & development , Phytoplankton*/physiology , Phytoplankton*/metabolism , Plankton*/growth & development , Plankton*/physiology, Photosynthesis ; Electron Transport ; Temperature ; Carbon/metabolism ; Ecosystem ; Phototrophic Processes ; Food Chain
Abstract: Mixoplankton, a major trophic group in aquatic ecosystems, are being affected by global warming. However, most studies on temperature effects use constant mean conditions, overlooking how short-term thermal fluctuations could deviate from climate projections and impact this group. We experimentally quantified how increasing amplitudes of warming fluctuation (± 1, 3, and 5 °C) alter carbon-specific electron transport (ETR c ), net photosynthesis (P c ), respiration (R c ), phagotrophy (Ph c ), carbon use efficiency (CUE), and growth (µ) in four protist species (three mixoplanktonic and one strict phototroph). We observed a consistent positive link between photosynthetic efficiency (P c :ETR c ratio) and Ph c , and a shift towards a strengthening of the phagotrophy (P c :ETR c / Ph c ratio) with greater thermal fluctuation. A potential explanation is a selective behavior aimed to increase phagotrophy to obtain inorganic nutrients through ingested prey internal re-cycling rather than relying on the environment, to support an enhanced photosynthetic efficiency and growth. An enhanced, coupled photo-phagotrophy activity could boost mixoplankton competitiveness compared to phytoplankton. Our findings underscore the need to incorporate trophic flexibility and its interaction with environmental variability into trait-based models to better predict community dynamics, biogeochemical cycling, and food web structure in aquatic ecosystems.
(© 2025. The Author(s).)
References: Mitra A, Flynn KJ, Stoecker DK, Raven JA (2024) Trait trade-offs in phagotrophic microalgae: the mixoplankton conundrum. Eur J Phycol 59:51–70. https://doi.org/10.1080/09670262.2023.2216259. (PMID: 10.1080/09670262.2023.2216259)
Moeller HV, Archibald KM, Leles SG, Ferdinand P (2024) Predicting optimal mixotrophic metabolic strategies in the global ocean. Sci Adv.  https://doi.org/10.1126/sciadv.adr0664.
Leles SG, Polimene L, Bruggeman J, Blackford J, Ciavatta S, Mitra A, Flynn KJ (2018) Modelling mixotrophic functional diversity and implications for ecosystem function. J Plankton Res 40:627–642. https://doi.org/10.1093/plankt/fby044. (PMID: 10.1093/plankt/fby044)
Larsson ME, Bramucci AR, Collins S, Hallegraeff G, Kahlke T, Raina J-B, Seymour JR, Doblin MA (2022) Mucospheres produced by a mixotrophic protist impact ocean carbon cycling. Nat Commun 13:1301. https://doi.org/10.1038/s41467-022-28867-8. (PMID: 10.1038/s41467-022-28867-8352885498921327)
Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226. https://doi.org/10.1038/nature07236. (PMID: 10.1038/nature0723618690208)
Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, Zubkov MV (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci U S A 109:5756–5760.  https://doi.org/10.1073/pnas.1118179109.
Barbaglia GS, Paight C, Honig M, Johnson MD, Marczak R, Lepori-Bui M, Moeller HV (2024) Environment-dependent metabolic investments in the mixotrophic chrysophyte Ochromonas. J Phycol 60:170–184. https://doi.org/10.1111/jpy.13418. (PMID: 10.1111/jpy.1341838141034)
Stoecker DK, Hansen PJ, Caron DA, Mitra A (2017) Mixotrophy in the marine plankton. Annu Rev Mar Sci 9:311–335. https://doi.org/10.1146/annurev-marine-010816-060617. (PMID: 10.1146/annurev-marine-010816-060617)
Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Glibert PM, Hansen PJ, Stoecker DK, Thingstad F, Tilmann U, Vage S, Wilken S, Zubkov MV (2014) The role of mixotrophic protist in the biological carbon pump. Biogeosciences 11:995–1005. https://doi.org/10.5194/bg-11-995-2014. (PMID: 10.5194/bg-11-995-2014)
Gillooly F, Brown JH, West GB, Savage VM, Charnov EL (2001) Effect of size and temperature on metabolic rate. Science 293:2248–2251. https://doi.org/10.1126/science.1061967. (PMID: 10.1126/science.106196711567137)
Brown JP, Gillooly F, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789.  https://doi.org/10.1890/03-9000.
Wilken S, Huisman J, Naus-Wiezer S, Van Donk E (2013) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233. https://doi.org/10.1111/ele.12033.
Wieczynski DJ, Moeller HV, Gibert JP (2023) Mixotrophic microbes create carbon tipping points under warming. Funct Ecol 37:1774–1786. https://doi.org/10.1111/1365-2435.14350. (PMID: 10.1111/1365-2435.14350)
Chen B, Laws EA (2017) Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol Oceanogr 62:806–817. https://doi.org/10.1002/lno.10462. (PMID: 10.1002/lno.10462)
Wang Q, Lyu Z, Omar S, Cornell S, Yang Z, Montagnes DJS (2019) Predicting temperature impacts on aquatic productivity: questioning the metabolic theory of ecology’s canonical activation energies. Limnol Oceanogr 64:1172–1185. https://doi.org/10.1002/lno.11105. (PMID: 10.1002/lno.11105)
Chang C-M, Grattepanche J-D, Sanders RW (2025) Influences of temperature and nutrient concentration on the balance of phototrophy and phagotrophy in a freshwater mixotrophic chrysophyte. J Plankton Res 47:fbaf038. https://doi.org/10.1093/plankt/fbaf038. (PMID: 10.1093/plankt/fbaf038)
Ferreira GD, Grigoropoulou A, Sainz E, Calbet A (2022) The effect of short-term temperature exposure on vital physiological processes of mixoplankton and protozooplankton. Mar Environ Res 179:105693. https://doi.org/10.1016/j.marenvres.2022.105693. (PMID: 10.1016/j.marenvres.2022.10569335803051)
Chen J, Deng L, Pang M, Li Y, Xu Z, Zhang X, Liu H (2024) Transcriptomic insights into the shift of trophic strategies in mixotrophic dinoflagellate Lepidodinium in the warming ocean. ISME Commun 4:ycae087. https://doi.org/10.1093/ismeco/ycae087. (PMID: 10.1093/ismeco/ycae0873901128011247192)
Princiotta SD, Smith BT, Sanders RW (2016) Temperature-dependent phagotrophy and phototrophy in a mixotrophy chrysophyte. J Phycol 52:432–440. https://doi.org/10.1111/jpy.12405. (PMID: 10.1111/jpy.1240527273535)
Cabrerizo MJ, González-Olalla JM, Hinojosa‐López VJ, Peralta‐Cornejo FJ, Carrillo P (2019) A shifting balance: responses of mixotrophic marine algae to cooling and warming under UVR. New Phytol 221:1317–1327.  https://doi.org/10.1111/nph.15470.
Cabrerizo MJ, Marañón E (2021) Temperature fluctuations in a warmer environment: impacts on microbial plankton. Fac Rev 10:9. https://doi.org/10.12703/r/10-9. (PMID: 10.12703/r/10-9)
Jensen JLWV (1906) Sur les fonctions convexes et les inégalités entre les valeurs Moyennes. Acta Math 30:175–193. (PMID: 10.1007/BF02418571)
Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano SM, Wehner M, Zho B (2021) Weather and climate extreme events in a changing climate. In: Masson-Delmotte, V, Zhai, P, Pirani, A, Connors, SL, Péan, C, Berger, S, Caud, N, Chen, Y, Goldfarb, L, Gomis, MI, Huang, M, Leitzell, K, Lonnoy, E, Matthews, JBR, Maycock, TK, Waterfield, T, Yelekçi, O, Yu, R, Zhou, B (eds.) Climate change 2021: The physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate chang. Cambridge University Press, Cambridge, UK and New York, USA, pp. 1513–1766.
Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G (2018) Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun 9:1719. https://doi.org/10.1038/s41467-018-03906-5. (PMID: 10.1038/s41467-018-03906-5297129005928086)
Schaum CE, Buckling A, Smirnoff N, Yvon-Durocher G (2022) Evolution of thermal tolerance and phenotypic plasticity under rapid and slow temperature fluctuations. Proc R Soc B Biol Sci 289:20220834.  https://doi.org/10.1098/rspb.2022.0834.
Denny MW, Dowd WW (2022) Physiological consequences of oceanic environmental variation: life from a pelagic organism’s perspective. Annu Rev Mar Sci 14:25–48. https://doi.org/10.1146/annurev-marine-040221-115454. (PMID: 10.1146/annurev-marine-040221-115454)
Urrutia-Cordero P, Zhang H, Chaguaceda F, Geng H, Hansson L-A (2020) Climate warming and heat waves alter harmful cyanobacterial blooms along the benthic-pelagic interface. Ecology 101:e03025.  https://doi.org/10.1002/ecy.3025.
Cabrerizo MJ, Maranón E, Fernández-González C, Alonso-Núñez A, Larsson H, Aranguren-Gassis M (2021) Temperature fluctuation attenuates the effects of warming in estuarine microbial plankton communities. Front Mar Sci 8:656282. https://doi.org/10.3389/fmars.2021.656282.
Sheng Y, Wang Y, Cai T, Wang Y, Fathalli A, Ismail SB, Feng Y (2025) Temperature fluctuation alleviates the negative effects of warming on marine diatoms: comparison between Thalassiosira sp. and Nitzschia closterium f. minutissima. Egusphere Preprint 1292. https://doi.org/10.5194/egusphere-2025-1292.
Wang X, Fu F, Qu P, Kling JD, Jiang H, Gao Y, Hutchins DA (2019) How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean? Biogeosciences 16:4393–4409.  https://doi.org/10.5194/bg-16-4393-2019.
Qu P, Fu F-X, Kling JD, Huh M, Wang X, Hutchins DA (2019) Distinct responses of the nitrogen-fixing marine cyanobacterium Trichodesmium to a thermally variable environment as a function of phosphorus availability. Front Microbiol 10:1282.  https://doi.org/10.3389/fmicb.2019.01282.
Gerhard M, Koussoroplis AM, Hillebrand H, Striebel M (2019) Phytoplankton community responses to temperature fluctuations under different nutrient concentrations and stoichiometry. Ecology 100:e02834. https://doi.org/10.1002/ecy.2834. (PMID: 10.1002/ecy.283431330048)
Tascón-Peña O, Cabrerizo MJ, Pérez-Lorenzo M, Marañón E (2025) Impact of thermal fluctuations on phytoplankton: an experimental multi-trait analysis across species. J Plankton Res 47:fbaf021.  https://doi.org/10.1093/plankt/fbaf021.
Rasconi S, Winter K, Kainz MJ (2017) Temperature increase and fluctuation induce phytoplankton biodiversity loss – evidence from a multi-seasonal mesocosm experiment. Ecol Evol 7:2936–2946. https://doi.org/10.1002/ece3.2889.
González-Olalla JM, Medina-Sánchez JM, Carrillo P (2022) Fluctuation at high temperature combined with nutrients alters the thermal dependence of phytoplankton. Microb Ecol 83:555–567. https://doi.org/10.1007/s00248-021-01787-8. (PMID: 10.1007/s00248-021-01787-834145482)
Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Husted, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239. (PMID: 10.1139/m62-02913902807)
Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159. https://doi.org/10.1023/A:1003231628456. (PMID: 10.1023/A:1003231628456)
Ballen-Segura M, Felip M, Catalán J (2017) Some mixotrophic flagellate species selectively graze on Archaea. Appl Environ Microbiol 83:e02317-02316.  https://doi.org/10.1128/AEM.02317-16.
González-Olalla JM, Medina-Sánchez JM, Carrillo P (2019) Mixotrophic trade-off under warming and UVR in a marine and a freshwater algae. J Phycol 55:1028–1040. https://doi.org/10.1111/jpy.12865.
Grujcic V, Nuy JK, Salcher MM, Shabarova T, Kasalicky V, Boenigk J, Jensen M, Simek K (2018) Cryptophyta as major bacterivores in freshwater summer plankton. ISME J 12:1668–1681. https://doi.org/10.1038/s41396-018-0057-5. (PMID: 10.1038/s41396-018-0057-5294638956018765)
Unrein F, Gasol JM, Not F, Forn I, Massana R (2014) Mixotrophic haptophytes are key bacteral grazers in oligotrophic coastal waters. ISME J 8:164–176. https://doi.org/10.1038/ismej.2013.132. (PMID: 10.1038/ismej.2013.13223924785)
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Armbrust EV, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin–Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot–Le Secq M-P, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Green BR, de Van Peer Y, Grigoriev IV (2008) Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244.  https://doi.org/10.1038/nature07410.
Rousseaux CS, Gregg WW (2014) Interannual variation in phytoplankton primary production at a global scale. Remote Sens 6:1–19. https://doi.org/10.3390/rs6010001. (PMID: 10.3390/rs6010001)
Kaplan DM, Largier JL, Navarrete S, Guiñez R, Castilla JC (2003) Large diurnal temperature fluctuations in the nearshore water column. Estuar Coast Shelf Sci 57:385–398.  https://doi.org/10.1016/S0272-7714(02)00363-3.
Woolway RI, Jones ID, Maberly SC, French JR, Livingstone DM, Monteith DT, Simpson GL, Thackeray SJ, Andersen MR, Battarbee RW, DeGasperi CL, Evans CD, de Eyto E, Feuchtmayr H, Hamilton DP, Kernan M, Krokowski J, Rimmer A, Rose KC, Rusak JA, Ryves DB, Scott DR, Shilland EM, Smyth RL, Staehr PA, Thomas R, Waldron S, Weyhenmeyer GA (2016) Diel surface temperature range scales with lake size. PLoS One 11:e0152466. (PMID: 10.1371/journal.pone.0152466270232004811584)
Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424.  https://doi.org/10.1046/j.1529-8817.1999.3520403.x.
Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579. https://doi.org/10.4319/lo.2000.45.3.0569.
Genty BE, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92.  https://doi.org/10.1016/S0304-4165(89)80016-9.
Picardo MC, de Meiros JL, de Queiroz O, Araújo OF, Chaloub RM (2013) Effects of CO 2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol 143:242–250.  https://doi.org/10.1016/j.biortech.2013.05.113.
Gomes T, Almeida AC, Georgantzoupoulou (2020) Characterization of cell responses in Rhodomonas Baltica exposed to PMMA nanoplastics. Sci Total Environ 726:138547. https://doi.org/10.1016/j.scitotenv.2020.138547. (PMID: 10.1016/j.scitotenv.2020.13854732320882)
Marzetz V, Spijkerman E, Striebel M, Wacker A (2020) Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply. Front Environ Sci 8:539733.  https://doi.org/10.3389/fenvs.2020.539733.
Torres MA, Ritchie RJ, Lilley R, Grillet C, Larkum AWD (2014) Measurement of photosynthesis and photosynthetic efficiency in two diatoms. N Z J Bot 52:6–27. https://doi.org/10.1080/0028825X.2013.831917. (PMID: 10.1080/0028825X.2013.831917)
Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2010) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384.  https://doi.org/10.1080/09670260310001612655.
del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Evol Syst 29:503–541. https://doi.org/10.1146/annurev.ecolsys.29.1.503. (PMID: 10.1146/annurev.ecolsys.29.1.503)
Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr 49:1722–1733. https://doi.org/10.4319/lo.2004.49.5.1722.
Cabrerizo MJ, González-Olalla JM, Hinojosa-López V, Peralta-Cornejo F, Carrillo P (2019) A shifting balance: responses of mixotrophic marine algae to cooling and warming under UVR. New Phytol 221:1317–1327. https://doi.org/10.1111/nph.15470. (PMID: 10.1111/nph.1547030306559)
González-Olalla JM, Medina-Sánchez JM, Norici A, Carrillo P (2021) Regulation of phagotrophy by prey, low nutrients, and low light in the mixotrophic haptophyte Isochrysis Galbana. Microb Ecol 82:981–993. https://doi.org/10.1007/s00248-021-01723-w. (PMID: 10.1007/s00248-021-01723-w33661311)
Bell RT, Ahlgren GM, Ahlgren I (1983) Estimating bacterioplankton production by measuring [ 3 H]thymidine incorporation in a eutrophic Swedish lake. Appl Environ Microbiol 45:1709–1721. https://doi.org/10.1128/aem.45.6.1709-1721.1983. (PMID: 10.1128/aem.45.6.1709-1721.198316346304242528)
Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303. https://doi.org/10.1128/aem.53.6.1298-1303.1987.
Team RC (2022) A language and environment for statistical computing. R foundation for statistical computing, Viena (Austria).
Chen B (2015) Patterns of thermal limits of phytoplankton. J Plankton Res 37:285–292.  https://doi.org/10.1093/plankt/fbv009.
Mansour JS, Anestis K (2021) Eco-evolutionary perspectives on mixoplankton. Front Mar Sci 8:666160.  https://doi.org/10.3389/fmars.2021.666160.
Bestion E, García-Carreras B, Schaum CE, Pawar S, Yvon-Durocher G (2018) Metabolic traits predict the effects of warming on phytoplankton competition. Ecol Lett 21:655–664. https://doi.org/10.1111/ele.12932. (PMID: 10.1111/ele.12932295756586849607)
Hinners J, Argyle PA, Walworth NG, Doblin MA, Levine NM, Collins S (2024) Multi-trait diversification in marine diatoms in constant and warmed environments. Proc R Soc B Biol Sci 291:20232564.  https://doi.org/10.1098/rspb.2023.2564.
Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639.  https://doi.org/10.1146/annurev.ecolsys.39.110707.173549.
Ye M, Xiao M, Zhang S, Huang J, Lin J, Lu Y, Liang S, Zhao J, Dai X, Xu L, Li M, Zhou Y, Overmans S, Xia J, Jin P (2023) Multi-trait analysis reveals large interspecific differences for phytoplankton in response to thermal change. Mar Environ Res 188:106008. https://doi.org/10.1016/j.marenvres.2023.106008. (PMID: 10.1016/j.marenvres.2023.10600837121174)
Archibald KM, Dutkiewicz S, Laufkötter C, Moeller HV (2024) Emergent trade-offs among plasticity strategies in mixotrophs. J Theor Biol 590:111854.  https://doi.org/10.1016/j.jtbi.2024.111854.
Millette NC, J. GR, Luo JY, Moeller HV, Stamieszkin K, Andersen KH, Brownlee EF, Cohen NR, Duhamel S, Dutkiewicz S, Glibert PM, Johnson MD, Leles SG, Maloney AE, Mcmanus GB, Poulton N, Princiotta SD, Sanders RW, Wilken S (2023) Mixoplankton and mixotrophy: future research priorities. J Plankton Res 45:576–596.  https://doi.org/10.1093/plankt/fbad020.
Li H, Chen J, Yu L, Fan G, Li T, Li L, Yuan H, Wang J, Wang C, Li D, Lin S (2024) In situ community transcriptomics illuminates CO 2 -fixation potentials and supporting roles of phagotrophy and proton pump in plankton in a subtropical marginal sea. Microbiol Spectr 12:e02177-02123.  https://doi.org/10.1128/spectrum.02177-23.
Edwards KF, Li Q, McBeain KA, Schvarcz CR, Steward GF (2023) Trophic strategies explain the ocean niches of small eukaryotic phytoplankton. Proc R Soc Lond B Biol Sci 290:20222021.  https://doi.org/10.1098/rspb.2022.2021.
Wilken S, Schuurmans JM, Matthijs HCP (2014) Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas Danica after feeding. New Phytol 204:882–889. https://doi.org/10.1111/nph.12975. (PMID: 10.1111/nph.1297525138174)
Fu F-X, Tschitschko B, Hutchins DA, Larsson ME, Baker KG, McInnes A, Kahlke T, Verma A, Murray SA, Doblin MA (2022) Temperature variability interacts with mean temperature to influence the predictability of microbial phenotypes. Glob Change Biol 28:5741–5754. https://doi.org/10.1111/gcb.16330. (PMID: 10.1111/gcb.16330)
Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation posesa greater risk to species than climate warming. Proc R Soc B Biol Sci 281:20132612.  https://doi.org/10.1098/rspb.2013.2612.
Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM (2020) Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA 117:5943–5948.  https://doi.org/10.1073/pnas.19193321.
Marañón E (2015) Cell size as a key determinant of phytoplankton metabolism and community structure. Annu Rev Mar Sci 7:241–264. https://doi.org/10.1146/annurev-marine-010814-015955. (PMID: 10.1146/annurev-marine-010814-015955)
Mitra A, Caron DA, Faure E, Flynn KJ, Leles SG, Hansen PJ, Mcmanus GB, Not F, Gomes HR, Santoferrara LF, Stoecker DK, Tillmann U (2023) The mixoplankton database (MDB): diversity of photo-phago-trophic plankton in form, function, and distribution across the global ocean. J Eukaryot Microbiol 70:e12972. https://doi.org/10.1111/jeu.12972.
Axelsson D, Gubonin N, Israelsson S, Pinhassi J (2024) Experimental assessment of marine microbial interactions: from predatory protists promoting bacterial survival to bacterial lysis of the protists. Appl Environ Microbiol 91:e00929–e00925. https://doi.org/10.1101/2024.02.09.579682. (PMID: 10.1101/2024.02.09.579682)
Stibor H, Sommer U (2003) Mixotrophy of a photosynthetic flagellate viewed from an optimal foraging perspective. Protist 154:91–98. https://doi.org/10.1078/143446103764928512. (PMID: 10.1078/14344610376492851212812372)
Mitra A, Flynn KJ (2023) Low rates of bacterivory enhances phototrophy and competitive advantage for mixoplankton growing in oligotrophic waters. Sci Rep 13:6900. https://doi.org/10.1038/s41598-023-33962-x. (PMID: 10.1038/s41598-023-33962-x3710607710140275)
Xiao W, Guo J, Ma L, An L, Tong Z, Xiang M, Li Q, Laws EA, Chen J, Huang B (2025) Phago-mixotrophic activity within nanophytoplankton community in a subtropical marginal sea. Limnol Oceanogr 70:1636–1650. https://doi.org/10.1002/lno.70077. (PMID: 10.1002/lno.70077)
Bates AE, Helmuth B, Burrows MT, Duncan MI, Garrabou J, Guy-Haim T, Lima F, Queirós AM, Seabra R, Marsh R, Belmaker J, Bensoussan N, Dong Y, Mazaris AD, Smale D, Wahl M, Rilov G (2018) Biologists ignore ocean weather at their peril. Nature 560:29–301. https://doi.org/10.1038/d41586-018-05869-5.
Velasco-Ayuso S, Medina-Sánchez JM, Guénon R, Carrillo P (2017) Ecoenzyme activity ratios reveal interactive effects of nutrient inputs and UVR in a Mediterranean high-mountain lake. Biogeochemistry 132:71–85.  https://doi.org/10.1007/s10533-016-0288-3.
Siegel DA, Baker KG, Low-Décarie E, Geider RJ (2020) High predictability of direct competition between marine diatoms under different temperatures and nutrient states. Ecol Evol 10:7276–7290. https://doi.org/10.1002/ece3.6453.
Siegel P, Baker KG, Low-Décarie E, Geider RJ (2023) Phytoplankton competition and resilience under fluctuating temperature. Ecol Evol 13:e9851. https://doi.org/10.1002/ece3.9851.
Grant Information: PID2022-136280NA-I00 MICIN/AEI/10.13039/501100011033 and the European Regional Development Fund; RYC2023-042504-I MICIU/AEI/10.13039/501100011033 and the European Social Fund plus (ESF+); DGP-POST-2024-00283 Junta de Andalucía; TED2021-131262B-I00 MCIN/AEI/10.13039/501100011033 and by the European Union NextGeneration EU/PRTR; FPU19/05924 Ministerio de Ciencia e Innovación; PID2020-118872RB-I00 MICIN/AEI/10.13039/501100011033 and the European Regional Development Fund (ERDF)
Contributed Indexing: Keywords: Carbon use efficiency; Electron transport rates; Jensen inequality; Net photosynthesis; Phago-mixotrophy; Respiration
Substance Nomenclature: 7440-44-0 (Carbon)
Entry Date(s): Date Created: 20251119 Date Completed: 20251206 Latest Revision: 20251206
Update Code: 20251206
DOI: 10.1007/s00248-025-02658-2
PMID: 41258129
Database: MEDLINE
Description
Abstract:Mixoplankton, a major trophic group in aquatic ecosystems, are being affected by global warming. However, most studies on temperature effects use constant mean conditions, overlooking how short-term thermal fluctuations could deviate from climate projections and impact this group. We experimentally quantified how increasing amplitudes of warming fluctuation (± 1, 3, and 5 °C) alter carbon-specific electron transport (ETR <sup>c</sup> ), net photosynthesis (P <sup>c</sup> ), respiration (R <sup>c</sup> ), phagotrophy (Ph <sup>c</sup> ), carbon use efficiency (CUE), and growth (µ) in four protist species (three mixoplanktonic and one strict phototroph). We observed a consistent positive link between photosynthetic efficiency (P <sup>c</sup> :ETR <sup>c</sup> ratio) and Ph <sup>c</sup> , and a shift towards a strengthening of the phagotrophy (P <sup>c</sup> :ETR <sup>c</sup> / Ph <sup>c</sup> ratio) with greater thermal fluctuation. A potential explanation is a selective behavior aimed to increase phagotrophy to obtain inorganic nutrients through ingested prey internal re-cycling rather than relying on the environment, to support an enhanced photosynthetic efficiency and growth. An enhanced, coupled photo-phagotrophy activity could boost mixoplankton competitiveness compared to phytoplankton. Our findings underscore the need to incorporate trophic flexibility and its interaction with environmental variability into trait-based models to better predict community dynamics, biogeochemical cycling, and food web structure in aquatic ecosystems.<br /> (© 2025. The Author(s).)
ISSN:1432-184X
DOI:10.1007/s00248-025-02658-2