Small RNAs big impact: a review on microRNA-mediated tolerance in wheat under terminal heat.
Gespeichert in:
| Titel: | Small RNAs big impact: a review on microRNA-mediated tolerance in wheat under terminal heat. |
|---|---|
| Autoren: | Warkad S; Division of Biochemistry, New Delhi, India., Kumar A; Division of Biochemistry, New Delhi, India., Gampa M; Division of Biochemistry, New Delhi, India., Goswami S; Division of Biochemistry, New Delhi, India., T V; Division of Biochemistry, New Delhi, India., Kumar S; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India., Dalal M; ICAR- National Institute of Plant Biotechnology, New Delhi, 110012, India., Mishra D; ICAR- Indian Agricultural Statistics Research Institute, New Delhi, 110012, India., Jha GK; ICAR- Indian Agricultural Statistics Research Institute, New Delhi, 110012, India., C V; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India., Kumar RR; Division of Biochemistry, New Delhi, India. ranjeetranjaniari@gmail.com. |
| Quelle: | Functional & integrative genomics [Funct Integr Genomics] 2025 Nov 18; Vol. 25 (1), pp. 245. Date of Electronic Publication: 2025 Nov 18. |
| Publikationsart: | Journal Article; Review |
| Sprache: | English |
| Info zur Zeitschrift: | Publisher: Springer Country of Publication: Germany NLM ID: 100939343 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-7948 (Electronic) Linking ISSN: 1438793X NLM ISO Abbreviation: Funct Integr Genomics Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Berlin : Springer, c2000- |
| MeSH-Schlagworte: | Triticum*/genetics , Triticum*/physiology , MicroRNAs*/genetics , MicroRNAs*/metabolism , Thermotolerance*/genetics , Heat-Shock Response*/genetics , RNA, Plant*/genetics , RNA, Plant*/metabolism, Gene Expression Regulation, Plant ; CRISPR-Cas Systems |
| Abstract: | Competing Interests: Declarations. Ethics: Not applicable. Competing interests: The authors declare no competing interests. MicroRNAs (miRNAs) are key regulators of gene expression in plant responses to abiotic stresses, including heat stress. High temperatures during the critical developmental stages of wheat (Triticum aestivum L.) drastically limit growth and production. Recent research has found that specific miRNAs regulate molecular complexes and physiological responses by targeting transcription factors, heat shock proteins, and signaling components, thereby modulating heat stress tolerance pathways. This review highlights current knowledge about heat-responsive miRNAs in wheat, including their validated targets and functional involvement in thermotolerance. In addition, we summarized the potential CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats /CRISPR associated protein 9) genome editing tool for precise alteration of miRNA genes or their targets, degradome profiling, the secondary structure of miRNA, and how interplay of miRNAs with HSFs and HSPs in target gene regulation to improve heat resilience. A comprehensive understanding of miRNA-regulated networks presents novel possibilities for developing climate-resilient wheat varieties, thereby ensuring food security in the face of global warming. (© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
| References: | Alzahrani S (2022) Degradome assisted MicroRNA prediction in plants. Doctoral, University of East Anglia. School of Computing Sciences. Arif M, Ilyas M, Adnan M et al (2025) Molecular mechanisms and breeding strategies for enhancing wheat resilience to environmental stresses: the role of heat shock proteins and implications for food security. Int J Biol Macromol 308:142468. https://doi.org/10.1016/j.ijbiomac.2025.142468. (PMID: 10.1016/j.ijbiomac.2025.14246840154715) Arif M, Men S, Mahmood N et al (2025a) Genome-wide identification of BAG co-chaperones in wheat (Triticum aestivum) and their temperature-responsive expression patterns with functional characterization of TaBAG5 interaction with Hsp40/J-domain proteins. Int J Biol Macromol 321:146176. https://doi.org/10.1016/j.ijbiomac.2025.146176. (PMID: 10.1016/j.ijbiomac.2025.14617640692058) Arif M, Shamshad J, Khalid F et al (2025b) Biotechnological and sustainable approaches to Climate-Resilient agriculture. J Agron Crop Sci 211:e70105. https://doi.org/10.1111/jac.70105. (PMID: 10.1111/jac.70105) Arnaud N, Laufs P (2023) Plant miRNA integrated functions in development and reproduction. Front Plant Physiol. https://doi.org/10.3389/fphgy.2023.1271423. (PMID: 10.3389/fphgy.2023.1271423) Attri K (2023) Sequence and functional diversification of miR391-directed PTGS modules in plants. Badia-i-Mompel P, Wessels L, Müller-Dott S et al (2023) Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet 24:739–754. https://doi.org/10.1038/s41576-023-00618-5. (PMID: 10.1038/s41576-023-00618-537365273) Bajczyk M, Jarmolowski A, Jozwiak M et al (2023) Recent insights into plant MiRNA biogenesis: multiple layers of MiRNA level regulation. Plants 12:342. https://doi.org/10.3390/plants12020342. (PMID: 10.3390/plants12020342366790559864873) Begum Y (2022) Regulatory role of MicroRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 821:146283. https://doi.org/10.1016/j.gene.2022.146283. (PMID: 10.1016/j.gene.2022.14628335143944) Bhat MA, Mir RA, Kumar V et al (2021) Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol Plant 172:1255–1268. https://doi.org/10.1111/ppl.13359. (PMID: 10.1111/ppl.1335933576013) Bhogireddy S, Mangrauthia SK, Kumar R et al (2021) Regulatory non-coding rnas: a new frontier in regulation of plant biology. Funct Integr Genomics 21:313–330. https://doi.org/10.1007/s10142-021-00787-8. (PMID: 10.1007/s10142-021-00787-8340134868298231) Bravo-Vázquez LA, Castro-Pacheco AM, Pérez-Vargas R et al (2025) The emerging applications of artificial MicroRNA-Mediated gene Silencing in plant biotechnology. Non-Coding RNA 11:19. https://doi.org/10.3390/ncrna11020019. (PMID: 10.3390/ncrna110200194012634311932238) Cao W, Yang L, Zhuang M et al (2024) Plant non-coding rnas: the new frontier for the regulation of plant development and adaptation to stress. Plant Physiol Biochem 208:108435. https://doi.org/10.1016/j.plaphy.2024.108435. (PMID: 10.1016/j.plaphy.2024.10843538402798) Chang L, Xia J (2023) MicroRNA regulatory network analysis using MiRNet 2.0. In: Song Q, Tao Z (eds) Transcription factor regulatory networks. Springer,US, New York, NY, pp 185–204. Charagh S, Wang H, Wang J et al (2024) Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 24:194. https://doi.org/10.1007/s10142-024-01481-1. (PMID: 10.1007/s10142-024-01481-139441418) Chen Y, Yu X (2023) Endoplasmic reticulum stress-responsive MicroRNAs are involved in the regulation of abiotic stresses in wheat. Plant Cell Rep 42:1433–1452. https://doi.org/10.1007/s00299-023-03040-7. (PMID: 10.1007/s00299-023-03040-737341828) Cisneros AE, Martín-García T, Primc A et al (2023) Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors. Nucleic Acids Res 51(19):10719–10736. https://doi.org/10.1093/nar/gkad747. (PMID: 10.1093/nar/gkad7473771360710602918) Deng F, Zeng F, Shen Q et al (2022) Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends Plant Sci 27:890–907. https://doi.org/10.1016/j.tplants.2022.01.009. (PMID: 10.1016/j.tplants.2022.01.00935165036) Dong Q, Hu B, Zhang C (2022) Micrornas and their roles in plant development. Front Plant Sci. https://doi.org/10.3389/fpls.2022.824240. (PMID: 10.3389/fpls.2022.824240370825129817030) Ergin K, Çetinkaya R (2022) Regulation of MicroRNAs. In: Allmer J, Yousef M (eds) MiRNomics: MicroRNA biology and computational analysis. Springer US, New York, NY, pp 1–32. Fan H, Wang X, Zhong H et al (2024) Integrated analysis of miRNAs, transcriptome and phytohormones in the flowering time regulatory network of tea oil camellia. Physiol Mol Biol Plants 30:945–956. https://doi.org/10.1007/s12298-024-01473-2. (PMID: 10.1007/s12298-024-01473-23897435711222345) Feng H, Wang B, Zhang Q, Fu Y, Huang L, Wang X, Kang Z (2015) Exploration of microRNAs and their targets engaging in the resistance interaction between wheat and stripe rust. Front Plant Sci 6:469. (PMID: 10.3389/fpls.2015.00469261757404485317) Fu J, Krishna Jagadish SV, Bowden RL (2022) Effects of post-flowering heat stress on chlorophyll content and yield components of a spring wheat diversity panel. Crop Sci 62:1926–1936. https://doi.org/10.1002/csc2.20778. (PMID: 10.1002/csc2.20778) Garcia-Oliveira AL, Ortiz R, Sarsu F et al (2025) The importance of genotyping within the climate-smart plant breeding value chain – integrative tools for genetic enhancement programs. https://doi.org/10.3389/fpls.2024.1518123. Ghag SB, Alok A, Rajam MV, Penna S (2023) Designing climate-resilient crops for sustainable agriculture: a silent approach. J Plant Growth Regul 42:6503–6522. https://doi.org/10.1007/s00344-022-10880-2. (PMID: 10.1007/s00344-022-10880-2) Gómez-Martín C, Zhou H, Medina JM et al (2022) Comprehensive, integrative genomic analysis of MicroRNA expression profiles in different tissues of two wheat cultivars with different traits. Funct Integr Genomics 23:15. https://doi.org/10.1007/s10142-022-00920-1. (PMID: 10.1007/s10142-022-00920-136562829) Gupta A, Hua L, Zhang Z et al (2022) CRISPR-induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnol J 21:536–548. https://doi.org/10.1111/pbi.13969. (PMID: 10.1111/pbi.13969364032329946137) Hafeez MB, Zahra N, Kausar A et al (2023) Influence of heat stress during grain development on the wheat grain yield, quality, and composition. J Soil Sci Plant Nutr 23:2955–2969. https://doi.org/10.1007/s42729-023-01386-1. (PMID: 10.1007/s42729-023-01386-1) Han R, Jian C, Lv J et al (2014) Identification and characterization of MicroRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L). BMC Genomics 15:289. https://doi.org/10.1186/1471-2164-15-289. (PMID: 10.1186/1471-2164-15-289247348734029127) Huo C, Zhang,Baowen, Wang R (2022) Research progress on plant noncoding RNAs in response to low-temperature stress. Plant Signal Behav 17:2004035. https://doi.org/10.1080/15592324.2021.2004035. (PMID: 10.1080/15592324.2021.200403534927551) Ijee S, Chambayil K, Chaudhury AD et al (2024) Efficient deletion of MicroRNAs using CRISPR/Cas9 with dual guide RNAs. Front Mol Biosci 10. https://doi.org/10.3389/fmolb.2023.1295507. Imran I, Awan MJA, Akhtar M et al (2025) Employment of RNA interference and CRISPR/Cas machinery for disease resistance in crops. Genome and epigenome editing for Stress-Tolerant crops. Wiley, Ltd, pp 293–320. (PMID: 10.1002/9781394280049.ch16) Jeena GS, Singh N, Shikha, Shukla RK, (2022) An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. Plant Cell Rep, 41(8):651–1671. Jodder J (2021) Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant. Plant Cell Rep 40:783–798. https://doi.org/10.1007/s00299-020-02660-7. (PMID: 10.1007/s00299-020-02660-733454802) Koyama T, Sato F, Ohme-Takagi M (2017) Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol 175:874–885. https://doi.org/10.1104/pp.17.00732. (PMID: 10.1104/pp.17.00732288425495619901) Kumar M, Kumar RR, Goswami S et al (2017) MiR430: the novel heat-responsive MicroRNA identified from mirnome analysis in wheat (Triticum aestivum L). Indian J Plant Physiol 22:566–576. https://doi.org/10.1007/s40502-017-0341-9. (PMID: 10.1007/s40502-017-0341-9) Li L, Dai H, Sun R et al (2025) Micrornas as biotechnological targets for future food security and agricultural sustainability. J Agric Food Chem 73:23118–23146. https://doi.org/10.1021/acs.jafc.5c07100. (PMID: 10.1021/acs.jafc.5c0710040902040) Lin J-S, Kuo C-C, Yang I-C et al (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:68. https://doi.org/10.3389/fpls.2018.00068. (PMID: 10.3389/fpls.2018.00068294498555799662) Liu X, Huang S, Xie H (2021) Advances in the regulation of plant development and stress response by miR167. Front Biosci-Landmark 26:655–665. https://doi.org/10.52586/4974. (PMID: 10.52586/4974) Liu T, Zhang L, Chen G, Shi T (2017) Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01278. Ma X, Zhao F, Zhou B (2022) The characters of Non-Coding RNAs and their biological roles in plant development and abiotic stress response. Int J Mol Sci 23:4124. https://doi.org/10.3390/ijms23084124. (PMID: 10.3390/ijms23084124354569439032736) Madhukar A, Kumar V, Dashora K (2022) Temperature and precipitation are adversely affecting wheat yield in India. J Water Clim Change 13:1631–1656. https://doi.org/10.2166/wcc.2022.443. (PMID: 10.2166/wcc.2022.443) Mall RK, Singh N, Patel S et al (2022) Climate changes over the Indian subcontinent: scenarios and impacts. In: Khare N (ed) Science, policies and conflicts of climate change: an Indian perspective. Springer International Publishing, Cham, pp 27–52. (PMID: 10.1007/978-3-031-16254-1_2) McHale M (2013) Endogene Protection from RNA Silencing in Plants. Mishra AK, Duraisamy G, Selvaraj, Matoušek J (2015) Discovering MicroRNAs and their targets in plants. Crit Rev Plant Sci 34:553–571. https://doi.org/10.1080/07352689.2015.1078614. (PMID: 10.1080/07352689.2015.1078614) Molinari MDC, Pagliarini RF, Florentino LH (2024) Navigating the path from lab to market: regulatory challenges and opportunities for genome editing technologies for agriculture. In: Chen J-T, Ahmar S (eds) Plant genome editing technologies: speed Breeding, crop improvement and sustainable agriculture. Springer Nature, Singapore, pp 25–63. (PMID: 10.1007/978-981-99-9338-3_2) Molinari HBC, Vieira LR, Silva, NV e et al (2021) CRISPR technology in plant genome editing: biotechnology applied to agriculture. Brasília, DF: Embrapa, 2021. Naeli P, Winter T, Hackett AP et al (2023) The intricate balance between microRNA-induced mRNA decay and translational repression. FEBS J 290:2508–2524. https://doi.org/10.1111/febs.16422. (PMID: 10.1111/febs.1642235247033) Novelli G, Cassadonte C, Sbraccia P, Biancolella M (2023) Genetics: A starting point for the prevention and the treatment of obesity. Nutrients 15:2782. https://doi.org/10.3390/nu15122782. (PMID: 10.3390/nu151227823737568610305006) O’Brien JA, Nguyen VHL, Peng C (2022) Chap. 1 - Overview on miRNA classification, biogenesis, and functions. In: Negrini M, Calin GA, Croce CM (eds) MicroRNA in Human Malignancies. Academic Press, pp 3–20. Olatunde-Aiyedun TG, Olatunde M, Jacob ON (2022) Causes, Effects, and Predictions of the Global Climate Change: 2012–2026. Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W (2017) Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci 75:177–191. https://doi.org/10.1007/s00018-017-2591-0. (PMID: 10.1007/s00018-017-2591-0287178725756259) Pandey V, Singh S (2024) Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects. Comb Chem High Throughput Screen 27:1701–1715. https://doi.org/10.2174/0113862073300371240229100613. Pashkovskiy PP, Kartashov AV, Zlobin IE et al (2016) Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants. Plant Physiol Biochem 104:146–154. https://doi.org/10.1016/j.plaphy.2016.03.018. (PMID: 10.1016/j.plaphy.2016.03.01827031426) Patil S, Joshi Shrushti, Jamla Monica et al (2021) Microrna-mediated bioengineering for climate-resilience in crops. Bioengineered 12:10430–10456. https://doi.org/10.1080/21655979.2021.1997244. (PMID: 10.1080/21655979.2021.1997244347472968815627) Peng T, Qiao M, Liu H et al (2018) A resource for inactivation of MicroRNAs using short tandem target mimic technology in model and crop plants. Mol Plant 11:1400–1417. https://doi.org/10.1016/j.molp.2018.09.003. (PMID: 10.1016/j.molp.2018.09.00330243763) Pradhan UK, Meher PK, Naha S et al (2023) ASmiR: a machine learning framework for prediction of abiotic stress–specific MiRNAs in plants. Funct Integr Genomics 23:92. https://doi.org/10.1007/s10142-023-01014-2. (PMID: 10.1007/s10142-023-01014-236939943) Rabuma T, Sanan-Mishra N (2025) Artificial miRNAs and target-mimics as potential tools for crop improvement. Physiol Mol Biol Plants 31:67–91. https://doi.org/10.1007/s12298-025-01550-0. (PMID: 10.1007/s12298-025-01550-039901962) Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) Micrornas in plants. Genes Dev 16:1616–1626. https://doi.org/10.1101/gad.1004402. (PMID: 10.1101/gad.100440212101121186362) Sahu VK, Parida AS, Ranjan A et al (2025) MiRVim: Three-dimensional MiRNA structure database. MicroRNA 14:59–72. https://doi.org/10.2174/0122115366307988240809045125. (PMID: 10.2174/012211536630798824080904512539171462) Saroha M, Arya A, Singh G, Sharma P (2024) Genome-wide expression analysis of novel heat-responsive MicroRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. Front Plant Sci. https://doi.org/10.3389/fpls.2024.1328114. (PMID: 10.3389/fpls.2024.13281143866044611039868) Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial MicroRNAs in Arabidopsis. Plant Cell 18:1121–1133. https://doi.org/10.1105/tpc.105.039834. (PMID: 10.1105/tpc.105.039834165314941456875) Sharma N, Sharma L, Onkarappa D et al (2024) Molecular basis and engineering strategies for transcription Factor-Mediated Reproductive-Stage heat tolerance in crop plants. Agronomy 14:159. https://doi.org/10.3390/agronomy14010159. (PMID: 10.3390/agronomy14010159) Shi T (2023) Chap. 15 - Food crops improvement: comparative biotechnological approaches. In: Guleria P, Kumar V, Mo B (eds) Plant Small RNA in Food Crops. Academic Press, pp 471–505. Singh A, Jain Deepti, Pandey Jyotsna et al (2023a) Deciphering the role of miRNA in reprogramming plant responses to drought stress. Crit Rev Biotechnol 43:613–627. https://doi.org/10.1080/07388551.2022.2047880. (PMID: 10.1080/07388551.2022.204788035469523) Singh S, Chaudhary R, Deshmukh R, Tiwari S (2023b) Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Mol Biol 111(1–2):1–20. https://doi.org/10.1007/s11103-022-01321-5. (PMID: 10.1007/s11103-022-01321-536315306) Sun Z, Shu L, Zhang W, Wang Z (2020) Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in Transgenic Arabidopsis Thaliana. PeerJ 8:e9105. https://doi.org/10.7717/peerj.9105. (PMID: 10.7717/peerj.9105325187197258901) Thody J, Folkes L, Medina-Calzada Z et al (2018) PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Res 46:8730–8739. https://doi.org/10.1093/nar/gky609. (PMID: 10.1093/nar/gky609300073486158750) Tuncel A, Pan C, Clem JS et al (2025) CRISPR–Cas applications in agriculture and plant research. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-025-00834-3. (PMID: 10.1038/s41580-025-00834-340055491) Ul Hassan M, Rasool T, Iqbal C et al (2022) Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. J Plant Growth Regul 41:2596–2613. https://doi.org/10.1007/s00344-021-10493-1. (PMID: 10.1007/s00344-021-10493-1) Ulu F, Unel NM, Baloglu MC (2025) Genome-wide analysis of MiRNAs and their target genes in wheat cultivars with different ploidy levels under drought stress. Planta 262:38. https://doi.org/10.1007/s00425-025-04757-3. (PMID: 10.1007/s00425-025-04757-34059097412213836) Vishwakarma H, Junaid A, Manjhi J et al (2018) Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) Cv C306. PLoS ONE 13:e0198293. https://doi.org/10.1371/journal.pone.0198293. (PMID: 10.1371/journal.pone.0198293299399876016904) Wang Y, Sun G (2023) Molecular prospective on the wheat grain development. Crit Rev Biotechnol 43(1):38–49. https://doi.org/10.1080/07388551.2021.2001784. (PMID: 10.1080/07388551.2021.200178434965821) Wang L, Gu X, Xu D et al (2011) MiR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62:761–773. https://doi.org/10.1093/jxb/erq307. (PMID: 10.1093/jxb/erq30721036927) Wei X, Ke H, Wen A et al (2021) Structural basis of MicroRNA processing by Dicer-like 1. Nat Plants 7:1389–1396. https://doi.org/10.1038/s41477-021-01000-1. (PMID: 10.1038/s41477-021-01000-134593993) Wójcik AM (2020) Research tools for the functional genomics of plant MiRNAs during zygotic and somatic embryogenesis. Int J Mol Sci 21:4969. https://doi.org/10.3390/ijms21144969. (PMID: 10.3390/ijms21144969326744597420248) Xu Y, Chen X (2023) Microrna biogenesis and stabilization in plants. Fundam Res 3:707–717. https://doi.org/10.1016/j.fmre.2023.02.023. (PMID: 10.1016/j.fmre.2023.02.0233893329811197542) Xu Z, Wang Z, Wang L, Qi YB (2024) Essential function of transmembrane transcription factor MYRF in promoting transcription of MiRNA lin-4 during C. elegans development. eLife 12:RP89903. https://doi.org/10.7554/eLife.89903. (PMID: 10.7554/eLife.899033896341111223767) Yadav MR, Choudhary M, Singh J et al (2022) Impacts, Tolerance, Adaptation, and mitigation of heat stress on wheat under changing climates. Int J Mol Sci 23:2838. https://doi.org/10.3390/ijms23052838. (PMID: 10.3390/ijms23052838352699808911405) Yan X, Li C, Liu K et al (2024) Parallel degradome-seq and DMS-MaPseq substantially revise the MiRNA biogenesis atlas in Arabidopsis. Nat Plants 10:1126–1143. https://doi.org/10.1038/s41477-024-01725-9. (PMID: 10.1038/s41477-024-01725-93891860611578046) Zaheer U, Munir F, Salum YM, He W (2024) Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 12:e17115. https://doi.org/10.7717/peerj.17115. (PMID: 10.7717/peerj.171153856045410979746) Zedan M, Schürch AP, Heinrich S et al (2024) Newly synthesized mRNA selectively escapes translational repression following acute stress. 2024.04.14.589419. Zhang H, Li F (2024) Structural determinants in the MiRNA/miRNA* duplex and the DCL1 PAZ domain for precise and efficient plant MiRNA processing. Plant J 120:109–122. https://doi.org/10.1111/tpj.16974. (PMID: 10.1111/tpj.1697439139021) Zhang H, Zhang J, Yan J et al (2017) Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A 114:5277–5282. https://doi.org/10.1073/pnas.1703752114. (PMID: 10.1073/pnas.1703752114284614995441788) Zhang F, Yang J, Zhang N et al (2022) Roles of MicroRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.919243. Zhao F, Wang C, Han J et al (2017) Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Funct Integr Genomics 17:213–235. https://doi.org/10.1007/s10142-016-0514-z. (PMID: 10.1007/s10142-016-0514-z27696076) Zhao X, Yang J, Wang H et al (2025) MicroRNAs in plants development and stress resistance. Plant Cell Environ n/a: https://doi.org/10.1111/pce.15546. Zhou X, Khare T, Kumar V (2020) Recent trends and advances in identification and functional characterization of plant MiRNAs. Acta Physiol Plant 42:25. https://doi.org/10.1007/s11738-020-3013-8. (PMID: 10.1007/s11738-020-3013-8) Zhou J, Deng K, Cheng Y et al (2017) CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function and regulation in rice. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01598. Zhu H, Li C, Gao C (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677. https://doi.org/10.1038/s41580-020-00288-9. (PMID: 10.1038/s41580-020-00288-932973356) |
| Grant Information: | CABin Indian Council of Agricultural Research; NICRA Indian Council of Agricultural Research |
| Contributed Indexing: | Keywords: Heat shock proteins (HSPs); Heat transcription factors (HSFs); MicroRNAs (miRNAs); Target gene regulation; Terminal heat stress; Thermotolerance; Wheat |
| Substance Nomenclature: | 0 (MicroRNAs) 0 (RNA, Plant) |
| Entry Date(s): | Date Created: 20251117 Date Completed: 20251118 Latest Revision: 20251117 |
| Update Code: | 20251118 |
| DOI: | 10.1007/s10142-025-01749-0 |
| PMID: | 41249545 |
| Datenbank: | MEDLINE |
| Abstract: | Competing Interests: Declarations. Ethics: Not applicable. Competing interests: The authors declare no competing interests.<br />MicroRNAs (miRNAs) are key regulators of gene expression in plant responses to abiotic stresses, including heat stress. High temperatures during the critical developmental stages of wheat (Triticum aestivum L.) drastically limit growth and production. Recent research has found that specific miRNAs regulate molecular complexes and physiological responses by targeting transcription factors, heat shock proteins, and signaling components, thereby modulating heat stress tolerance pathways. This review highlights current knowledge about heat-responsive miRNAs in wheat, including their validated targets and functional involvement in thermotolerance. In addition, we summarized the potential CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats /CRISPR associated protein 9) genome editing tool for precise alteration of miRNA genes or their targets, degradome profiling, the secondary structure of miRNA, and how interplay of miRNAs with HSFs and HSPs in target gene regulation to improve heat resilience. A comprehensive understanding of miRNA-regulated networks presents novel possibilities for developing climate-resilient wheat varieties, thereby ensuring food security in the face of global warming.<br /> (© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
|---|---|
| ISSN: | 1438-7948 |
| DOI: | 10.1007/s10142-025-01749-0 |
Full Text Finder
Nájsť tento článok vo Web of Science