The Ca 2+ Bridge: From Neurons to Circuits in Rett Syndrome.

Saved in:
Bibliographic Details
Title: The Ca 2+ Bridge: From Neurons to Circuits in Rett Syndrome.
Authors: Molina Calistro L; Facultad de Ciencias, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile., Arancibia Y; Facultad de Ciencias, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile.; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago 8320000, Chile., Alarcón J; Facultad de Medicina, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile., Torres RF; Facultad de Ciencias, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile.
Source: International journal of molecular sciences [Int J Mol Sci] 2025 Oct 29; Vol. 26 (21). Date of Electronic Publication: 2025 Oct 29.
Publication Type: Journal Article; Review
Language: English
Journal Info: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
Imprint Name(s): Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms: Rett Syndrome*/metabolism , Rett Syndrome*/genetics , Rett Syndrome*/pathology , Neurons*/metabolism , Neurons*/pathology , Calcium*/metabolism , Calcium Signaling*, Humans ; Methyl-CpG-Binding Protein 2/metabolism ; Methyl-CpG-Binding Protein 2/genetics ; Animals ; Brain-Derived Neurotrophic Factor/metabolism ; Ryanodine Receptor Calcium Release Channel/metabolism ; MicroRNAs/metabolism ; MicroRNAs/genetics ; Mutation
Abstract: Rett syndrome (RTT) is a severe neurodevelopmental disorder caused primarily by mutations in the gene encoding the methyl-CpG-binding protein 2 (Mecp2). Mecp2 binds to methylated cytosines, playing a crucial role in chromatin organization and transcriptional regulation. At the neurobiological level, RTT is characterized by dendritic spine dysgenesis and altered excitation-inhibition balance, drawing attention to the mechanisms that scale from mutations in a nuclear protein to altered neuronal connectivity. Although Mecp2 dysfunction disrupts multiple neuronal processes, emerging evidence highlights altered calcium (Ca 2+ ) signaling as a central contributor to RTT pathophysiology. This review explores the link between Mecp2 and Ca 2+ regulation by highlighting how Mecp2 affects Ca 2+ -dependent transcriptional pathways, while Ca 2+ modulates Mecp2 function by inducing post-translational modifications. We discuss this crosstalk in light of evidence from RTT models, with a particular focus on the brain-derived neurotrophic factor BDNF-miR132-Mecp2 axis and the dysregulation of ryanodine receptors (RyRs). Additionally, we examine how these perturbations contribute to the reduced structural plasticity and the altered activity-driven gene expression that characterizes RTT. Understanding the intersection between Mecp2 function and Ca 2+ homeostasis will provide critical insights into RTT pathogenesis and potential therapeutic targets aimed at restoring neuronal connectivity.
References: PLoS One. 2010 Nov 29;5(11):e15497. (PMID: 21124738)
Biochemistry. 1999 Jun 1;38(22):7008-18. (PMID: 10353812)
J Child Neurol. 1998 Sep;13(9):429-33. (PMID: 9733288)
Nat Rev Neurosci. 2013 Sep;14(9):593-608. (PMID: 23942469)
Am J Med Genet A. 2004 Apr 15;126A(2):129-40. (PMID: 15057977)
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1129-F1138. (PMID: 29846108)
Neuroscience. 2019 Aug 10;413:183-205. (PMID: 31229631)
Front Neurol. 2021 Mar 02;12:639994. (PMID: 33737904)
Cell. 2012 Dec 21;151(7):1417-30. (PMID: 23260135)
Neuroreport. 1994 Jul 21;5(12):1509-13. (PMID: 7948850)
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16426-31. (PMID: 16260724)
J Neurosci. 2014 Jan 15;34(3):717-25. (PMID: 24431430)
Front Neuroendocrinol. 2019 Oct;55:100786. (PMID: 31513775)
eNeuro. 2022 Jul 15;9(4):. (PMID: 35788105)
Int J Mol Sci. 2023 Sep 26;24(19):. (PMID: 37834018)
Science. 2008 May 30;320(5880):1224-9. (PMID: 18511691)
Mol Ther. 2023 Sep 6;31(9):2767-2782. (PMID: 37481701)
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4882-7. (PMID: 19225110)
J Neurosci. 2014 Sep 17;34(38):12877-83. (PMID: 25232122)
Front Endocrinol (Lausanne). 2020 Jun 10;11:385. (PMID: 32587576)
Nature. 1998 May 28;393(6683):386-9. (PMID: 9620804)
Front Mol Neurosci. 2017 Jun 13;10:188. (PMID: 28659760)
Eur J Pediatr. 2008 Jun;167(6):661-9. (PMID: 17684768)
Nat Neurosci. 2004 Apr;7(4):373-9. (PMID: 15004561)
Nat Neurosci. 2011 Aug 28;14(10):1345-51. (PMID: 21874013)
Cell Calcium. 2023 Dec;116:102821. (PMID: 37949035)
Neuron. 2011 Oct 6;72(1):3-5. (PMID: 21982363)
Mol Cell. 2010 Feb 26;37(4):457-68. (PMID: 20188665)
Neuropharmacology. 2007 Jan;52(1):118-25. (PMID: 16905161)
Neuron. 2020 May 20;106(4):566-578.e8. (PMID: 32169170)
Neuron. 2011 Oct 6;72(1):72-85. (PMID: 21982370)
Endocrinology. 2010 Feb;151(2):731-40. (PMID: 19966177)
Neuroscientist. 2004 Apr;10(2):118-28. (PMID: 15070486)
Nature. 2015 Jun 4;522(7554):89-93. (PMID: 25762136)
Hum Mol Genet. 2004 Nov 1;13(21):2679-89. (PMID: 15351775)
Curr Neurovasc Res. 2017;14(4):385-396. (PMID: 29090669)
Int J Biochem Cell Biol. 2012 Jan;44(1):6-10. (PMID: 22062950)
Front Cell Neurosci. 2021 Nov 19;15:764761. (PMID: 34867203)
Eur J Hum Genet. 2012 Jan;20(1):69-76. (PMID: 21829232)
Int J Mol Sci. 2022 Sep 22;23(19):. (PMID: 36232428)
Front Neurosci. 2021 Dec 10;15:699583. (PMID: 34955705)
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9093-8. (PMID: 18577589)
PLoS One. 2010 Jul 12;5(7):e11534. (PMID: 20634955)
Hippocampus. 2013 Jul;23(7):625-33. (PMID: 23520022)
Nat Genet. 2001 Mar;27(3):322-6. (PMID: 11242117)
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6800-6. (PMID: 25739960)
Neuron. 2007 Nov 8;56(3):422-37. (PMID: 17988628)
J Neurosci. 2012 Jan 18;32(3):989-94. (PMID: 22262897)
Cereb Cortex. 2016 May;26(5):1938-1956. (PMID: 25662825)
Mol Cell Neurosci. 2010 Jan;43(1):146-56. (PMID: 19850129)
Front Neurosci. 2018 May 25;12:245. (PMID: 29887794)
Curr Biol. 2006 Apr 4;16(7):710-6. (PMID: 16581518)
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12560-5. (PMID: 16116096)
Front Endocrinol (Lausanne). 2024 Oct 31;15:1477227. (PMID: 39544232)
Neuron. 2025 Feb 05;113(3):380-395.e8. (PMID: 39689710)
Nat Genet. 1999 Oct;23(2):185-8. (PMID: 10508514)
Neuron. 2021 Jan 20;109(2):299-313.e9. (PMID: 33157003)
Science. 2003 Oct 31;302(5646):885-9. (PMID: 14593183)
Elife. 2016 Oct 26;5:. (PMID: 27782879)
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):. (PMID: 34389673)
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310344120. (PMID: 37871205)
Neuron. 2006 Oct 19;52(2):255-69. (PMID: 17046689)
Hum Mol Genet. 2023 Dec 12;33(1):1-11. (PMID: 37694858)
Brain Res Bull. 2025 Jul;227:111386. (PMID: 40378493)
Sci Rep. 2011;1:45. (PMID: 22355564)
Nat Neurosci. 2007 Dec;10(12):1513-4. (PMID: 17994015)
J Comp Neurol. 2007 Apr 1;501(4):526-42. (PMID: 17278130)
Nat Neurosci. 2001 Mar;4(3):261-7. (PMID: 11224542)
Cell Tissue Res. 2020 Oct;382(1):185-199. (PMID: 32537724)
J Child Neurol. 2018 Mar;33(4):286-289. (PMID: 29366381)
EMBO Mol Med. 2024 Nov;16(11):2795-2826. (PMID: 39402139)
Neurobiol Dis. 2006 Jan;21(1):217-27. (PMID: 16087343)
Neuron. 2006 Feb 2;49(3):341-8. (PMID: 16446138)
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6033-8. (PMID: 15069197)
Sci Transl Med. 2023 Jan 18;15(679):eadd4666. (PMID: 36652535)
Science. 2003 Oct 31;302(5646):826-30. (PMID: 14593168)
Sci Transl Med. 2019 Jul 31;11(503):. (PMID: 31366578)
Neuron. 1998 Apr;20(4):709-26. (PMID: 9581763)
PLoS Comput Biol. 2022 Apr 25;18(4):e1010069. (PMID: 35468131)
J Pediatr. 2006 Mar;148(3):347-52. (PMID: 16615965)
Biochem Pharmacol. 2017 May 15;132:133-142. (PMID: 28322744)
Front Cell Neurosci. 2014 Aug 13;8:236. (PMID: 25165434)
Neural Plast. 2021 Aug 11;2021:9930962. (PMID: 34434232)
Neurobiol Stress. 2021 Feb 25;14:100311. (PMID: 33718536)
Sci Adv. 2024 Nov;10(44):eadq3374. (PMID: 39475605)
Nat Rev Neurosci. 2025 Jul;26(7):379-398. (PMID: 40360671)
Cereb Cortex. 2023 Jun 8;33(12):7436-7453. (PMID: 36897048)
Hum Mol Genet. 2020 Sep 30;29(R1):R89-R99. (PMID: 32681172)
J Neurosci. 2012 Sep 26;32(39):13529-36. (PMID: 23015442)
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3029-34. (PMID: 21282625)
Nucleic Acids Res. 2012 Jun;40(11):4742-53. (PMID: 22362752)
Neurobiol Dis. 2013 Nov;59:257-66. (PMID: 23948639)
Cold Spring Harb Perspect Biol. 2011 Nov 01;3(11):a004564. (PMID: 21791697)
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4577-8. (PMID: 19293386)
Hum Mol Genet. 2012 Sep 1;21(17):3806-14. (PMID: 22653753)
J Biol Chem. 2001 Feb 2;276(5):3353-60. (PMID: 11035019)
Neuron. 2007 Oct 4;56(1):58-65. (PMID: 17920015)
J Neurosci. 2009 Sep 9;29(36):11263-70. (PMID: 19741133)
Front Neuroanat. 2014 Sep 10;8:97. (PMID: 25309341)
Neural Plast. 2019 Jul 14;2019:5982625. (PMID: 31396272)
Neuron. 2011 Apr 14;70(1):35-42. (PMID: 21482354)
Mol Pain. 2016 Mar 08;12:. (PMID: 27030715)
Hum Mol Genet. 2009 Jul 1;18(13):2431-42. (PMID: 19369296)
Front Cell Dev Biol. 2020 Aug 21;8:763. (PMID: 32974336)
J Biol Chem. 2012 Sep 7;287(37):30967-74. (PMID: 22822052)
J Mol Biol. 2020 Mar 13;432(6):1602-1623. (PMID: 31629770)
Mol Brain. 2023 Jan 28;16(1):16. (PMID: 36709268)
Front Psychiatry. 2019 Apr 29;10:278. (PMID: 31110484)
Front Cell Neurosci. 2022 Apr 18;16:864828. (PMID: 35518644)
Front Endocrinol (Lausanne). 2024 Jan 08;14:1310432. (PMID: 38260155)
Cell Rep. 2017 Apr 18;19(3):505-520. (PMID: 28423315)
Genes Dev. 2002 Jan 1;16(1):6-21. (PMID: 11782440)
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15148-53. (PMID: 18815371)
J Biol Chem. 2013 Mar 1;288(9):6438-50. (PMID: 23300088)
Mol Med Rep. 2015 Oct;12(4):5399-406. (PMID: 26239616)
J Neurosci. 2012 Jul 18;32(29):10021-34. (PMID: 22815516)
Brain. 2019 Feb 1;142(2):239-248. (PMID: 30649225)
Neuropharmacology. 2014 Jan;76 Pt C:737-46. (PMID: 23597512)
Autism Open Access. 2012;2012(Suppl 1):5. (PMID: 23946910)
Grant Information: 11230898 Agencia Nacional de Investigación y Desarrollo; 11240855 Agencia Nacional de Investigación y Desarrollo; 3200655 Agencia Nacional de Investigación y Desarrollo; NCN2023_032 ANID-MILENIO
Contributed Indexing: Keywords: Mecp2; Rett syndrome; calcium; calcium signaling; neuronal function and dysfunction; ryanodine receptors
Substance Nomenclature: 0 (Methyl-CpG-Binding Protein 2)
SY7Q814VUP (Calcium)
0 (Brain-Derived Neurotrophic Factor)
0 (MECP2 protein, human)
0 (Ryanodine Receptor Calcium Release Channel)
0 (MicroRNAs)
Entry Date(s): Date Created: 20251113 Date Completed: 20251113 Latest Revision: 20251116
Update Code: 20251116
PubMed Central ID: PMC12609203
DOI: 10.3390/ijms262110490
PMID: 41226529
Database: MEDLINE
Description
Abstract:Rett syndrome (RTT) is a severe neurodevelopmental disorder caused primarily by mutations in the gene encoding the methyl-CpG-binding protein 2 (Mecp2). Mecp2 binds to methylated cytosines, playing a crucial role in chromatin organization and transcriptional regulation. At the neurobiological level, RTT is characterized by dendritic spine dysgenesis and altered excitation-inhibition balance, drawing attention to the mechanisms that scale from mutations in a nuclear protein to altered neuronal connectivity. Although Mecp2 dysfunction disrupts multiple neuronal processes, emerging evidence highlights altered calcium (Ca <sup>2+</sup> ) signaling as a central contributor to RTT pathophysiology. This review explores the link between Mecp2 and Ca <sup>2+</sup> regulation by highlighting how Mecp2 affects Ca <sup>2+</sup> -dependent transcriptional pathways, while Ca <sup>2+</sup> modulates Mecp2 function by inducing post-translational modifications. We discuss this crosstalk in light of evidence from RTT models, with a particular focus on the brain-derived neurotrophic factor BDNF-miR132-Mecp2 axis and the dysregulation of ryanodine receptors (RyRs). Additionally, we examine how these perturbations contribute to the reduced structural plasticity and the altered activity-driven gene expression that characterizes RTT. Understanding the intersection between Mecp2 function and Ca <sup>2+</sup> homeostasis will provide critical insights into RTT pathogenesis and potential therapeutic targets aimed at restoring neuronal connectivity.
ISSN:1422-0067
DOI:10.3390/ijms262110490