Legacies of model initialization on predictions of future ecosystem dynamics in California's Sierra Nevada: insights from GEDI.

Gespeichert in:
Bibliographische Detailangaben
Titel: Legacies of model initialization on predictions of future ecosystem dynamics in California's Sierra Nevada: insights from GEDI.
Autoren: Chang LL; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.; Department of Geography, Florida State University, Tallahassee, FL, 32306, USA., Liu S; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA., Antonarakis AS; Department of Geography, University of Sussex, Falmer, Brighton, BN1 9SJ, UK., Longo M; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.; Divisão de Modelagem Numérica do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, 12630-000, SP, Brazil., Tang H; Department of Geography, National University of Singapore, Singapore, 119077, Singapore., Armston JD; Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA., Dubayah R; Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA., Moorcroft P; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
Quelle: The New phytologist [New Phytol] 2025 Dec; Vol. 248 (6), pp. 2809-2832. Date of Electronic Publication: 2025 Nov 11.
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
Imprint Name(s): Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH-Schlagworte: Ecosystem* , Models, Biological*, California ; Climate Change ; Biomass
Abstract: Accurate estimates of aboveground vegetation structure are essential for making reliable predictions of terrestrial ecosystem responses to climate change. However, traditional small-scale ground-based inventory methods cannot easily be scaled up to comprehensive, large-scale estimates of ecosystem structure. We assimilate remotely-sensed Light Detection and Ranging measurements of vegetation structure and corresponding imaging-spectrometry-derived estimates of canopy composition into the ecosystem demography (ED2.2) terrestrial biosphere model across an elevational transect in California's Sierra Nevada. We then used the model to assess: how incorporating observed ecosystem structure and composition influences predictions of ecosystem change over the coming century as compared to simulations initialized with long-term potential vegetation; and how ecosystems are predicted to respond differently to future climate change. Our analyses show multi-decadal impacts of initialization on predictions of ecosystem composition and structure, emphasizing long-term legacies of climate and disturbance history in predictions of ecosystem responses to climate change that are not captured when models are initialized with outputs from long-term historical simulations. The remote sensing-initialized simulations predict increases in aboveground biomass and leaf area index, and pronounced elevation-dependent changes in canopy composition. The differences among initialization methods, climate scenarios, and elevational gradients have important implications for improving ecosystem modeling and informing land management strategies.
(© 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.)
References: Abdalati W, Zwally HJ, Bindschadler R, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T et al. 2010. The ICESat‐2 laser altimetry mission. Proceedings of the IEEE 98: 735–751.
Alaniz AJ, Carvajal MA, Fierro A, Vergara‐Rodríguez V, Toledo G, Ansaldo D, Moreira‐Arce D, Rojas‐Osorio A, Vergara PM. 2021. Remote‐sensing estimates of forest structure and dynamics as indicators of habitat quality for Magellanic woodpeckers. Ecological Indicators 126: 107634.
Albani M, Medvigy D, Hurtt GC, Moorcroft PR. 2006. The contributions of land‐use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology 12: 2370–2390.
Antonarakis AS, Bogan SA, Goulden ML, Moorcroft PR. 2022. Impacts of the 2012–2015 Californian drought on carbon, water and energy fluxes in the Californian Sierras: Results from an imaging spectrometry‐constrained terrestrial biosphere model. Global Change Biology 28: 1823–1852.
Antonarakis AS, Munger JW, Moorcroft PR. 2014. Imaging spectroscopy‐and lidar‐derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics. Geophysical Research Letters 41: 2535–2542.
Antonarakis AS, Saatchi SS, Chazdon RL, Moorcroft PR. 2011. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function. Ecological Applications 21: 1120–1137.
Bogan SA, Antonarakis AS, Moorcroft PR. 2019. Imaging spectrometry‐derived estimates of regional ecosystem composition for the Sierra Nevada, California. Remote Sensing of Environment 228: 14–30.
Bohn FJ, Huth A. 2017. The importance of forest structure to biodiversity–productivity relationships. Royal Society Open Science 4: 160521.
Braun FJ, Schädler G. 2005. Comparison of soil hydraulic parameterizations for mesoscale meteorological models. Journal of Applied Meteorology 44: 1116–1132.
Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J et al. 2005. Regional vegetation die‐off in response to global‐change‐type drought. Proceedings of the National Academy of Sciences, USA 102: 15144–15148.
Brown S, Schroeder P, Birdsey R. 1997. Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecology and Management 96: 37–47.
Byer S, Jin Y. 2017. Detecting drought‐induced tree mortality in Sierra Nevada forests with time series of satellite data. Remote Sensing 9: 929.
CAL FIRE. 2024. Top 20 largest California wildfires. [WWW document] URL https://www.fire.ca.gov/our‐impact/statistics [accessed 1 May 2025].
Calkin DE, Gebert KM, Jones JG, Neilson RP. 2005. Forest Service large fire area burned and suppression expenditure trends, 1970–2002. Journal of Forestry 103: 179–183.
Chai Y, Yue Y, Slater LJ, Yin J, Borthwick AG, Chen T, Wang G. 2022. Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia. Nature Communications 13: 4124.
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature 558: 531–539.
Clapp RB, Hornberger GM. 1978. Empirical equations for some soil hydraulic‐properties. Water Resources Research 14: 601–604.
Collatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration – a model that includes laminar boundary layer. Agricultural and Forest Meteorology 54: 107–136.
Collins M, Allen MR. 2002. Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. Journal of Climate 15: 3104–3109.
Dai Y, Xin Q, Wei N, Zhang Y, Shangguan W, Yuan H, Zhang S, Liu S, Lu X. 2019. A global high‐resolution data set of soil hydraulic and thermal properties for land surface modeling. Journal of Advances in Modeling Earth Systems 11: 2996–3023.
De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Wang YP, Luo Y, Jain AK, El‐Masri B, Hickler T et al. 2014. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free‐air CO2 enrichment sites. New Phytologist 203: 883–899.
Dubayah R, Armston J, Healey SP, Bruening JM, Patterson PL, Kellner JR, Duncanson L, Saarela S, Ståhl G, Yang Z et al. 2022. GEDI launches a new era of biomass inference from space. Environmental Research Letters 17: 95001.
Dubayah R, Tang H, Armston J, Luthcke S, Hofton M, Blair J. 2020. GEDI L2B canopy cover and vertical profile metrics data global footprint level V001 [Data set]. NASA EOSDIS Land Processes DAAC. doi: 10.5067/GEDI/GEDI02_B.001. [accessed 07 February 2023].
Fatichi S, Pappas C, Zscheischler J, Leuzinger S. 2019. Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist 221: 652–668.
Fayad I, Baghdadi N, Lahssini K. 2022. An assessment of the GEDI lasers' capabilities in detecting canopy tops and their penetration in a densely vegetated, tropical area. Remote Sensing 14: 2969.
Feng Y, Negrón‐Juárez RI, Romps DM, Chambers JQ. 2023. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nature Communications 14: 101.
Fettig CJ, Mortenson LA, Bulaon BM, Foulk PB. 2019. Tree mortality following drought in the central and southern Sierra Nevada, California, US. Forest Ecology and Management 432: 164–178.
Fisher R, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P, Ian Woodward F. 2010. Assessing uncertainties in a second‐generation dynamic vegetation model caused by ecological scale limitations. New Phytologist 187: 666–681.
Fisher RA, Koven CD. 2020. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth Systems 12: e2018MS001453.
Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Gregor L, Hauck J, Le Quéré C, Luijkx IT, Olsen A, Peters GP et al. 2022. Global Carbon Budget. Earth System Science Data 14: 4811–4900.
Fu Z, Stoy PC, Poulter B, Gerken T, Zhang Z, Wakbulcho G, Niu S. 2019. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Global Change Biology 25: 3381–3394.
Garvin J, Bufton J, Blair J, Harding D, Luthcke S, Frawley J, Rowlands D. 1998. Observations of the Earth's topography from the shuttle laser altimeter (SLA): laser‐pulse echo‐recovery measurements of terrestrial surfaces. Physics and Chemistry of the Earth 23: 1053–1068.
van Genuchten MT. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892–898.
Goetz S, Dubayah R, Duncanson L. 2022. Revisiting the status of forest carbon stock changes in the context of the measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation. Environmental Research Letters 17: 111003.
Goulden ML, Bales RC. 2019. California forest die‐off linked to multi‐year deep soil drying in 2012–2015 drought. Nature Geoscience 12: 632–637.
Green JK, Seneviratne SI, Berg AM, Findell KL, Hagemann S, Lawrence DM, Gentine P. 2019. Large influence of soil moisture on long‐term terrestrial carbon uptake. Nature 565: 476–479.
Hardouin L, Delire C, Decharme B, Lawrence DM, Nabel JE, Brovkin V, Collier N, Fisher R, Hoffman FM, Koven CD et al. 2022. Uncertainty in land carbon budget simulated by terrestrial biosphere models: the role of atmospheric forcing. Environmental Research Letters 17: 094033.
Hochberg EJ, Roberts DA, Dennison PE, Hulley GC. 2015. Special issue on the Hyperspectral Infrared Imager (HyspIRI): emerging science in terrestrial and aquatic ecology, radiation balance and hazards. Remote Sensing of Environment 167: 1–5.
Holm JA, Knox RG, Zhu Q, Fisher RA, Koven CD, Nogueira Lima AJ, Riley WJ, Longo M, Negrón Juárez RI, de Araújo AC et al. 2020. The central Amazon biomass sink under current and future atmospheric CO2: predictions from big‐leaf and demographic vegetation models. Journal of Geophysical Research: Biogeosciences 125: e2019JG005500.
Hurtt G, Zhao M, Sahajpal R, Armstrong A, Birdsey R, Campbell E, Dolan K, Dubayah R, Fisk JK, Flanagan S et al. 2019. Beyond MRV: high‐resolution forest carbon modeling for climate mitigation planning over Maryland, USA. Environmental Research Letters 14: 45013.
Hurtt GC, Chini L, Sahajpal R, Frolking S, Bodirsky BL, Calvin K, Doelman JC, Fisk J, Fujimori S, Klein Goldewijk K et al. 2020. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development 13: 5425–5464.
Hurtt GC, Dubayah R, Drake J, Moorcroft PR, Pacala SW, Blair JB, Fearon MG. 2004. Beyond potential vegetation: combining lidar data and a height‐structured model for carbon studies. Ecological Applications 14: 873–883.
Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S et al. 2006. The underpinnings of land‐use history: three centuries of global gridded land‐use transitions, wood‐harvest, and resulting secondary lands. Global Change Biology 12: 22.
Hurtt GC, Pacala SW, Moorcroft PR, Caspersen J, Shevliakova E, Houghton RA, Moore B Iii. 2002. Projecting the future of the US carbon sink. Proceedings of the National Academy of Sciences, USA 99: 1389–1394.
Ishii HT, Tanabe SI, Hiura T. 2004. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Forest Science 50: 342–355.
Klein Goldewijk K, Beusen A, Doelman J, Stehfest E. 2017. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth System Science Data 9: 927–953.
Klein Goldewijk K, Beusen A, van Drecht G, de Vos M. 2011. The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Global Ecology and Biogeography 20: 73–86.
Knorr W, Gobron N, Scholze M, Kaminski T, Schnur R, Pinty B. 2007. Impact of terrestrial biosphere carbon exchanges on the anomalous CO2 increase in 2002–2003. Geophysical Research Letters 34: L09703.
Kosugi KI, Inoue M. 2002. Estimation of hydraulic properties of vertically heterogeneous forest soil from transient matric pressure data. Water Resources Research 38: 58‐1–58‐8.
Kueppers LM, Snyder MA, Sloan LC, Zavaleta ES, Fulfrost B. 2005. Modeled regional climate change and California endemic oak ranges. Proceedings of the National Academy of Sciences, USA 102: 16281–16286.
Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, Jones CD, Lawrence PJ, de Noblet‐Ducoudré N, Pongratz J et al. 2016. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development 9: 2973–2998.
Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P et al. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2: 831–836.
Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne P, Trisos C, Romero J, Aldunce P, Barrett K et al. 2023. Synthesis Report of the IPCC Sixth Assessment Report (AR6): Summary for Policymakers. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
Li Z, Liu T, Huang Y, Peng J, Ling Y. 2022. Evaluation of the CMIP6 precipitation simulations over global land. Earth's Future 10: e2021EF002500.
Liang M, González‐Roglich M, Roehrdanz P, Tabor K, Zvoleff A, Leitold V, Silva J, Fatoyinbo T, Hansen M, Duncanson L. 2023. Assessing protected area's carbon stocks and ecological structure at regional‐scale using GEDI lidar. Global Environmental Change 78: 102621.
Liang S, Hurteau MD, Westerling AL. 2017. Response of Sierra Nevada forests to projected climate–wildfire interactions. Global Change Biology 23: 2016–2030.
Longo M, Keller M, Kueppers LM, Bowman KW, Csillik O, Ferraz A, Saatchi S. 2025. Degradation and deforestation increase the sensitivity of the Amazon Forest to climate extremes. Environmental Research Letters 20: 54024.
Longo M, Knox RG, Medvigy DM, Levine NM, Dietze MC, Kim Y, Swann AL, Zhang K, Rollinson CR, Bras RL et al. 2019. The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography Model, v.2.2–Part 1: model description. Geoscientific Model Development 12: 4309–4346.
Longo M, Saatchi S, Keller M, Bowman K, Ferraz A, Moorcroft PR, Morton DC, Bonal D, Brando P, Burban B et al. 2020. Impacts of degradation on water, energy, and carbon cycling of the Amazon tropical forests. Journal of Geophysical Research. Biogeosciences 125: e2020JG005677.
Lovenduski NS, Bonan GB. 2017. Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters 12: 44020.
Ma L, Hurtt G, Tang H, Lamb R, Campbell E, Dubayah R, Guy M, Huang W, Lister A, Lu J et al. 2021. High‐resolution forest carbon modelling for climate mitigation planning over the RGGI region, USA. Environmental Research Letters 16: 045014.
Ma Q, Su Y, Niu C, Ma Q, Hu T, Luo X, Tai X, Qiu T, Zhang Y, Bales RC et al. 2023. Tree mortality during long‐term droughts is lower in structurally complex forest stands. Nature Communications 14: 7467.
Madakumbura GD, Goulden ML, Hall A, Fu R, Moritz MA, Koven CD, Kueppers LM, Norlen CA, Randerson JT. 2020. Recent California tree mortality portends future increase in drought‐driven forest die‐off. Environmental Research Letters 15: 124040.
Magyar JC, Sambridge M. 2023. Hydrological objective functions and ensemble averaging with the Wasserstein distance. Hydrology and Earth System Sciences 27: 991–1010.
McDowell NG, Allen CD, Anderson‐Teixeira K, Aukema BH, Bond‐Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury‐Brown A et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368: eaaz9463.
McIntyre PJ, Thorne JH, Dolanc CR, Flint AL, Flint LE, Kelly M, Ackerly DD. 2015. Twentieth‐century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, USA 112: 1458–1463.
Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W et al. 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change 5: 528–534.
Medvigy D, Moorcroft PR. 2012. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 367: 222–235.
Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR. 2009. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model v.2. Journal of Geophysical Research: Biogeosciences 114: G01002.
Michel A, Sharma V, Lehning M, Huwald H. 2021. Climate change scenarios at hourly time‐step over Switzerland from an enhanced temporal downscaling approach. International Journal of Climatology 41: 3503–3522.
Moghim S, McKnight SL, Zhang K, Ebtehaj AM, Knox RG, Bras RL, Moorcroft PR, Wang J. 2017. Bias‐corrected data sets of climate model outputs at uniform space–time resolution for land surface modelling over Amazonia. International Journal of Climatology 37: 621–636.
Moorcroft PR, Hurtt GC, Pacala SW. 2001. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs 71: 557–586.
Ni‐Meister W, Jupp DL, Dubayah R. 2001. Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Transactions on Geoscience and Remote Sensing 39: 1943–1958.
Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E et al. 2011. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. Journal of Geophysical Research: Atmospheres 116: D12109.
O'Geen A, Safeeq M, Wagenbrenner J, Stacy E, Hartsough P, Devine S, Tian Z, Ferrell R, Goulden M, Hopmans JW et al. 2018. Southern Sierra critical zone observatory and Kings River experimental watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone Journal 17: 1–18.
Ogle SM, Breidt FJ, Easter M, Williams S, Killian K, Paustian K. 2010. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process‐based model. Global Change Biology 16: 810–822.
Pappas C, Fatichi S, Leuzinger S, Wolf A, Burlando P. 2013. Sensitivity analysis of a process‐based ecosystem model: pinpointing parameterization and structural issues. Journal of Geophysical Research: Biogeosciences 118: 505–528.
Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RH, Scholes RJ, Bruford MW, Brummitt N, Butchart SH, Cardoso AC et al. 2013. Essential biodiversity variables. Science 339: 277–278.
Pillay R, Watson JE, Hansen AJ, Jantz PA, Aragon‐Osejo J, Armenteras D, Atkinson SC, Burns P, Ervin J, Goetz SJ et al. 2022. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nature Ecology & Evolution 6: 1840–1849.
Poulter B, Frank DC, Hodson EL, Zimmermann NE. 2011. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8: 2027–2036.
Prentice IC, Liang X, Medlyn BE, Wang YP. 2015. Reliable, robust and realistic: the three R's of next‐generation land‐surface modelling. Atmospheric Chemistry and Physics 15: 5987–6005.
Puy A, Beneventano P, Levin SA, Lo Piano S, Portaluri T, Saltelli A. 2022. Models with higher effective dimensions tend to produce more uncertain estimates. Science Advances 8: eabn9450.
Raiho A, Dietze M, Dawson A, Rollinson CR, Tipton J, McLachlan J. 2020. Towards understanding predictability in ecology: A forest gap model case study. bioRxiv. 10.1101/2020.05.05.079871.
Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO. 1998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment 65: 267–279.
Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Zaehle S. 2017. A roadmap for improving the representation of photosynthesis in earth system models. New Phytologist 213: 22–42.
Rosati A, Miyakoda K, Gudgel R. 1997. The impact of ocean initial conditions on ENSO forecasting with a coupled model. Monthly Weather Review 125: 754–772.
Serra‐Diaz JM, Maxwell C, Lucash MS, Scheller RM, Laflower DM, Miller AD, Tepley AJ, Epstein HE, Anderson‐Teixeira KJ, Thompson JR. 2018. Disequilibrium of fire‐prone forests sets the stage for a rapid decline in conifer dominance during the 21st century. Scientific Reports 8: 6749.
Shao Y, Irannejad P. 1999. On the choice of soil hydraulic models in land‐surface schemes boundary‐layer. Meteorology 90: 83–115.
Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, Sentman LT, Fisk JP, Wirth C, Crevoisier C. 2009. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochemical Cycles 23: GB2022.
Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray‐Tortarolo G, Ahlström A, Doney SC, Graven H, Heinze C, Huntingford C et al. 2015. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12: 653–679.
Stan C, Kirtman BP. 2008. The influence of atmospheric noise and uncertainty in ocean initial conditions on the limit of predictability in a coupled GCM. Journal of Climate 21: 3487–3503.
Steel ZL, Safford HD, Viers JH. 2015. The fire frequency‐severity relationship and the legacy of fire suppression in California forests. Ecosphere 6: art8.
Stephens SL, Collins BM, Fettig CJ, Finney MA, Hoffman CM, Knapp EE, North MP, Safford H, Wayman RB. 2018. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68: 77–88.
Tang H, Armston J, Dubayah R. 2019. Algorithm theoretical basis document (ATBD) for GEDI L2B footprint canopy cover and vertical profile metrics. Greenbelt, MD, USA: Goddard Space Flight Center.
Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S, Fisher JB, Reich PB, Stocker BD, Hungate BA et al. 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change 9: 684–689.
Thom D, Keeton WS. 2019. Stand structure drives disparities in carbon storage in northern hardwood‐conifer forests. Forest Ecology and Management 442: 10–20.
Tokmakian R, Challenor P. 2019. Influence of initial ocean conditions on temperature and precipitation in a coupled climate model's solution. Advances in Statistical Climatology, Meteorology and Oceanography 5: 17–35.
Walker AP, Hanson PJ, De Kauwe MG, Medlyn BE, Zaehle S, Asao S, Dietze M, Hickler T, Huntingford C, Iversen CM et al. 2014. Comprehensive ecosystem model‐data synthesis using multiple data sets at two temperate forest free‐air CO2 enrichment experiments: model performance at ambient CO2 concentration. Journal of Geophysical Research: Biogeosciences 119: 937–964.
Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Parton W, Ricciuto DM, Wang YP, Wårlind D et al. 2015. Predicting long‐term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Global Biogeochemical Cycles 29: 476–495.
Wang M, Wang J, Cai Q, Zeng N, Lu X, Yang R, Jiang F, Wang H, Ju W. 2021. Considerable uncertainties in simulating land carbon sinks induced by different precipitation products. Journal of Geophysical Research. Biogeosciences 126: e2021JG006524.
Weng E, Luo Y, Wang W, Wang H, Hayes DJ, McGuire AD, Hastings A, Schimel DS. 2012. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model. Journal of Geophysical Research – Biogeosciences 117: G03014.
Wieder WR, Cleveland CC, Smith WK, Todd‐Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience 8: 441–444.
Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW. 2010. Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the National Academy of Sciences, USA 107: 21289–21294.
Wramneby A, Smith B, Zaehle S, Sykes MT. 2008. Parameter uncertainties in the modelling of vegetation dynamics—effects on tree community structure and ecosystem functioning in European forest biomes. Ecological Modelling 216: 277–290.
Xu X, Konings AG, Longo M, Feldman A, Xu L, Saatchi S, Moorcroft P. 2021. Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content. New Phytologist 231: 122–136.
Xu X, Medvigy D, Powers JS, Becknell JM, Guan K. 2016. Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytologist 212: 80–95.
Yang H, Ciais P, Frappart F, Li X, Brandt M, Fensholt R, Fan L, Saatchi S, Besnard S, Deng Z et al. 2023. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nature Geoscience 16: 886–892.
Yu Z, Ciais P, Piao S, Houghton RA, Lu C, Tian H, Agathokleous E, Kattel GR, Sitch S, Goll D et al. 2022. Forest expansion dominates China's land carbon sink since 1980. Nature Communications 13: 5374.
Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang YP, El‐Masri B, Thornton P et al. 2014. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free‐Air CO2 Enrichment studies. New Phytologist 202: 803–822.
Zeibig‐Kichas NE, Ardis CW, Berrill JP, King JP. 2016. Bark thickness equations for mixed‐conifer forest type in Klamath and Sierra Nevada Mountains of California. International Journal of Forestry Research 2016: 1864039.
Zhang K, Ali A, Antonarakis A, Moghaddam M, Saatchi S, Tabatabaeenejad A, Chen R, Jaruwatanadilok S, Cuenca R, Crow WT et al. 2019. The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: an analysis using radar‐derived estimates of root‐zone soil moisture. Journal of Geophysical Research: Biogeosciences 124: 3208–3231.
Zhu J, Huang B, Marx L, Kinter JL III, Balmaseda MA, Zhang RH, Hu ZZ. 2012. Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophysical Research Letters 39: L09602.
Zscheischler J, Westra S, Van Den Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, Bresch DN, Leonard M, Wahl T et al. 2018. Future climate risk from compound events. Nature Climate Change 8: 469–477.
Grant Information: #80NSSC21K0197 United States NASA NASA; #80NSSC21K0197 United States NASA NASA
Contributed Indexing: Keywords: California's Sierra Nevada; Ecosystem Demography Model (ED2.2); GEDI; climate change; ecosystem composition; ecosystem structure; future predictions; model initialization
Entry Date(s): Date Created: 20251112 Date Completed: 20251120 Latest Revision: 20251120
Update Code: 20251121
DOI: 10.1111/nph.70657
PMID: 41220168
Datenbank: MEDLINE
Beschreibung
Abstract:Accurate estimates of aboveground vegetation structure are essential for making reliable predictions of terrestrial ecosystem responses to climate change. However, traditional small-scale ground-based inventory methods cannot easily be scaled up to comprehensive, large-scale estimates of ecosystem structure. We assimilate remotely-sensed Light Detection and Ranging measurements of vegetation structure and corresponding imaging-spectrometry-derived estimates of canopy composition into the ecosystem demography (ED2.2) terrestrial biosphere model across an elevational transect in California's Sierra Nevada. We then used the model to assess: how incorporating observed ecosystem structure and composition influences predictions of ecosystem change over the coming century as compared to simulations initialized with long-term potential vegetation; and how ecosystems are predicted to respond differently to future climate change. Our analyses show multi-decadal impacts of initialization on predictions of ecosystem composition and structure, emphasizing long-term legacies of climate and disturbance history in predictions of ecosystem responses to climate change that are not captured when models are initialized with outputs from long-term historical simulations. The remote sensing-initialized simulations predict increases in aboveground biomass and leaf area index, and pronounced elevation-dependent changes in canopy composition. The differences among initialization methods, climate scenarios, and elevational gradients have important implications for improving ecosystem modeling and informing land management strategies.<br /> (© 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.)
ISSN:1469-8137
DOI:10.1111/nph.70657