Plasma membrane calcium ATPases and cerebellar pathology: what's the role in the ataxia?

Saved in:
Bibliographic Details
Title: Plasma membrane calcium ATPases and cerebellar pathology: what's the role in the ataxia?
Authors: Peggion C; Department of Biology, University of Padova, Padova, Italy., Marchionni I; Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy., Carafoli E; Veneto Institute of Molecular Medicine, Padova, Italy. ernestocarafoli@gmail.com., Brini M; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. marisa.brini@unipd.it.; Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy. marisa.brini@unipd.it., Calì T; Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy. tito.cali@unipd.it.; Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy. tito.cali@unipd.it.; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy. tito.cali@unipd.it.
Source: Biology direct [Biol Direct] 2025 Nov 06; Vol. 20 (1), pp. 109. Date of Electronic Publication: 2025 Nov 06.
Publication Type: Journal Article; Review
Language: English
Journal Info: Publisher: BioMed Central Country of Publication: England NLM ID: 101258412 Publication Model: Electronic Cited Medium: Internet ISSN: 1745-6150 (Electronic) Linking ISSN: 17456150 NLM ISO Abbreviation: Biol Direct Subsets: MEDLINE
Imprint Name(s): Original Publication: [London] : BioMed Central, 2006-
MeSH Terms: Plasma Membrane Calcium-Transporting ATPases*/metabolism , Plasma Membrane Calcium-Transporting ATPases*/genetics , Cerebellum*/pathology , Cerebellum*/enzymology , Cerebellar Ataxia*/enzymology, Humans ; Animals ; Calcium/metabolism ; Calcium Signaling ; Cell Membrane/enzymology ; Neurons/metabolism
Abstract: Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
Ca²⁺ signaling is essential for neuronal development, migration, synaptic activity, spine plasticity, neurotransmitter release, membrane excitability, and long-term synaptic plasticity, as well as for the coupling between membrane depolarization and downstream signaling. Traditionally, Plasma Membrane Ca²⁺ ATPases (PMCAs) were considered high-affinity, low-capacity calcium extruders. However, recent evidence reveals that the PMCA-Neuroplastin complex facilitates ultrafast Ca²⁺ clearance at kilohertz frequencies, reshaping our understanding of calcium regulation, in particular in neurons. For bulk Ca²⁺ clearance, they are overshadowed by more powerful low-affinity/high-capacity systems on the plasma membrane. This raises key questions: what is the specific physiological and pathological role of PMCAs? Why do cells require a high-affinity/low-capacity, ATP-dependent extrusion mechanism? What is the functional meaning of the diversity of isoforms (four) and splice variants (over thirty)? And why do neurons localize distinct PMCA pumps to pre- and postsynaptic sites? The prevailing hypothesis is that PMCAs fine-tune Ca²⁺ microdomains through local regulation and interactions with specific protein partners. Finally, understanding their role in Purkinje cells (PCs) is particularly relevant, as alterations in PMCA function have been implicated in cerebellar pathology and ataxia.
(© 2025. The Author(s).)
References: J Biol Chem. 2003 Jul 4;278(27):24500-8. (PMID: 12716903)
Eur J Biochem. 1994 Sep 15;224(3):873-6. (PMID: 7925410)
J Biol Chem. 1981 Aug 25;256(16):8588-92. (PMID: 6455424)
Mov Disord. 2016 Nov;31(11):1752-1753. (PMID: 27653636)
Cerebellum. 2013 Oct;12(5):667-75. (PMID: 23568408)
J Biol Chem. 2004 Aug 6;279(32):33742-50. (PMID: 15178683)
Brain Behav. 2015 Apr;5(4):e00321. (PMID: 25798335)
Endocrinology. 2016 Jun;157(6):2489-99. (PMID: 27035656)
Biochim Biophys Acta Mol Basis Dis. 2017 Jan;1863(1):165-173. (PMID: 27632770)
J Clin Hypertens (Greenwich). 2024 Apr;26(4):355-362. (PMID: 38430457)
J Physiol. 2018 Sep;596(17):4253-4267. (PMID: 29928778)
J Neurophysiol. 2006 Dec;96(6):3485-91. (PMID: 16987931)
Cerebellum. 2012 Sep;11(3):630-9. (PMID: 20480274)
J Comp Neurol. 2003 Dec 22;467(4):464-76. (PMID: 14624481)
Genet Med. 2023 Dec;25(12):100971. (PMID: 37675773)
Neuron. 2003 Oct 9;40(2):331-46. (PMID: 14556712)
Nat Neurosci. 2006 Mar;9(3):389-97. (PMID: 16474392)
Nature. 2012 Sep 20;489(7416):443-6. (PMID: 22895189)
Biochemistry. 1990 Sep 4;29(35):8070-6. (PMID: 2175646)
Neuroscience. 2021 May 10;462:247-261. (PMID: 32554108)
J Biol Chem. 2004 Oct 1;279(40):41619-25. (PMID: 15292209)
J Biol Chem. 1998 Jul 24;273(30):18693-6. (PMID: 9668038)
Biol Psychiatry. 2017 Jan 15;81(2):124-135. (PMID: 27215477)
J Biol Chem. 2015 Jun 26;290(26):16132-41. (PMID: 25953895)
J Am Coll Cardiol. 2013 Aug 27;62(9):789-98. (PMID: 23727086)
Physiol Rev. 2017 Jul 1;97(3):1089-1125. (PMID: 28566538)
Hypertension. 2014 Jan;63(1):188-95. (PMID: 24082052)
Circ Res. 2003 Oct 3;93(7):614-21. (PMID: 12933703)
N Engl J Med. 2005 Apr 14;352(15):1557-64. (PMID: 15829536)
Cell Rep. 2018 Jan 16;22(3):734-747. (PMID: 29346770)
Brain Res Mol Brain Res. 1995 Mar;29(1):71-80. (PMID: 7770003)
Psychiatr Genet. 2019 Oct;29(5):152-159. (PMID: 31464996)
Curr Biol. 2000 Jul 13;10(14):R522-5. (PMID: 10898992)
Curr Opin Neurobiol. 2006 Jun;16(3):288-97. (PMID: 16713244)
J Biol Chem. 1988 Feb 15;263(5):2195-202. (PMID: 2963001)
Hypertension. 2012 Apr;59(4):854-60. (PMID: 22311909)
J Am Heart Assoc. 2014 Nov 10;3(6):e001398. (PMID: 25385345)
Proc Natl Acad Sci U S A. 2021 Jul 13;118(28):. (PMID: 34244444)
J Biol Chem. 2014 Dec 12;289(50):34900-10. (PMID: 25324542)
Sci Rep. 2017 Aug 21;7(1):8358. (PMID: 28827723)
Cerebellum. 2012 Jun;11(2):457-87. (PMID: 22161499)
J Biol Chem. 2016 Sep 30;291(40):20849-20857. (PMID: 27462077)
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1516-21. (PMID: 17234811)
Nature. 2012 Nov 15;491(7424):468-72. (PMID: 23086147)
J Biol Chem. 2011 Dec 2;286(48):41520-41529. (PMID: 21965681)
PLoS One. 2009 Jun 03;4(6):e5775. (PMID: 19492049)
Cold Spring Harb Perspect Biol. 2011 Feb 01;3(2):. (PMID: 21421919)
Neuron. 2000 May;26(2):473-82. (PMID: 10839365)
Neuroscientist. 2019 Jun;25(3):241-257. (PMID: 29985093)
Mol Cell Neurosci. 2007 Feb;34(2):178-88. (PMID: 17150372)
Nat Genet. 2009 Jun;41(6):677-87. (PMID: 19430479)
Hypertens Res. 2011 May;34(5):606-11. (PMID: 21228780)
J Biol Chem. 1994 Jan 21;269(3):1687-91. (PMID: 8294415)
Physiol Rev. 2001 Jan;81(1):21-50. (PMID: 11152753)
Curr Neuropharmacol. 2023;21(2):183-201. (PMID: 35339179)
Trends Neurosci. 2005 Oct;28(10):541-51. (PMID: 16122815)
Biol Psychiatry. 2011 Nov 1;70(9):880-7. (PMID: 21757185)
Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4327-32. (PMID: 10759566)
J Neurochem. 2005 Nov;95(3):673-83. (PMID: 16104848)
J Biol Chem. 2014 Apr 11;289(15):10261-10268. (PMID: 24570005)
Nat Rev Neurosci. 2010 Jan;11(1):30-43. (PMID: 19997115)
J Biol Chem. 1987 May 5;262(13):6425-30. (PMID: 3032968)
J Clin Endocrinol Metab. 2016 May;101(5):1889-916. (PMID: 26934393)
Curr Opin Neurobiol. 2007 Feb;17(1):112-9. (PMID: 17275285)
Protein Sci. 1992 Dec;1(12):1613-21. (PMID: 1339025)
Neurosci Lett. 2018 Jan 10;663:25-28. (PMID: 29452612)
J Neurosci. 2007 Mar 7;27(10):2493-502. (PMID: 17344387)
Nat Rev Neurosci. 2011 Jun;12(6):327-44. (PMID: 21544091)
Neurology. 2019 Dec 10;93(24):e2257-e2271. (PMID: 31712368)
J Biol Chem. 2004 Jul 2;279(27):28220-6. (PMID: 15078889)
Curr Opin Neurobiol. 2011 Apr;21(2):245-53. (PMID: 21353528)
J Physiol. 2008 Jul 1;586(13):3043-54. (PMID: 18467365)
Front Syst Neurosci. 2021 Apr 15;15:644059. (PMID: 33935660)
Brain Res. 1997 Feb 14;748(1-2):21-9. (PMID: 9067441)
Front Hum Neurosci. 2023 Jul 28;17:1197459. (PMID: 37576472)
Cell Calcium. 2001 Jul;30(1):49-57. (PMID: 11396987)
Brain Res Mol Brain Res. 1992 Dec;16(3-4):223-31. (PMID: 1337931)
Front Cell Neurosci. 2016 Jul 08;10:176. (PMID: 27458345)
Cell Death Dis. 2024 Aug 15;15(8):594. (PMID: 39147737)
Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3303-3312. (PMID: 28807751)
PLoS One. 2013 Jun 24;8(6):e67479. (PMID: 23826306)
Front Synaptic Neurosci. 2016 Nov 03;8:35. (PMID: 27857688)
Dis Model Mech. 2016 May 1;9(5):553-62. (PMID: 27013529)
J Biol Chem. 1988 Feb 25;263(6):2905-10. (PMID: 2963820)
J Biol Chem. 1989 May 15;264(14):8289-96. (PMID: 2542272)
Cerebellum. 2017 Apr;16(2):552-576. (PMID: 27485952)
Nat Commun. 2016 Mar 29;7:11074. (PMID: 27020607)
Nat Genet. 2012 Jul 01;44(8):890-4. (PMID: 22751097)
Circ Res. 1998 Nov 2;83(9):877-88. (PMID: 9797336)
J Pharm Pharm Sci. 2013;16(2):217-30. (PMID: 23958191)
J Biol Chem. 1993 May 15;268(14):10252-9. (PMID: 8387515)
Neurobiol Dis. 2018 Jul;115:157-166. (PMID: 29655659)
Front Cell Neurosci. 2009 Jul 06;3:4. (PMID: 19597563)
Reproduction. 2015 May;149(5):475-84. (PMID: 25820902)
Nat Genet. 2016 Oct;48(10):1171-1184. (PMID: 27618452)
J Neurophysiol. 1968 Sep;31(5):785-97. (PMID: 4974877)
Genet Med. 2001 Nov-Dec;3(6):393-8. (PMID: 11715002)
Science. 2003 May 30;300(5624):1437-9. (PMID: 12775842)
Malar J. 2023 Feb 27;22(1):68. (PMID: 36849945)
J Biol Chem. 1999 Jan 1;274(1):527-31. (PMID: 9867875)
J Neurosci. 2005 Jan 19;25(3):558-65. (PMID: 15659591)
J Clin Invest. 2015 Jan;125(1):263-74. (PMID: 25485680)
Nat Rev Neurosci. 2002 Nov;3(11):896-902. (PMID: 12415297)
Nat Commun. 2019 Dec 16;10(1):5732. (PMID: 31844061)
PLoS One. 2014 Aug 13;9(8):e104790. (PMID: 25119969)
FEBS J. 2013 Nov;280(21):5385-97. (PMID: 23413890)
J Biol Chem. 1991 Jan 5;266(1):22-7. (PMID: 1824694)
Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11949-53. (PMID: 8265654)
Sci Signal. 2015 Feb 17;8(364):ra19. (PMID: 25690014)
Hear Res. 2004 Sep;195(1-2):90-102. (PMID: 15350283)
Hear Res. 2001 Dec;162(1-2):19-28. (PMID: 11707348)
Nat Genet. 1998 Aug;19(4):390-4. (PMID: 9697703)
J Neurochem. 2007 Jul;102(2):378-88. (PMID: 17596212)
Lancet Haematol. 2018 Aug;5(8):e333-e345. (PMID: 30033078)
Biochem Biophys Res Commun. 2017 Feb 19;483(4):1116-1124. (PMID: 27480928)
Nat Rev Mol Cell Biol. 2003 Jul;4(7):517-29. (PMID: 12838335)
J Biol Chem. 1991 Feb 15;266(5):2930-6. (PMID: 1847139)
Cell Death Differ. 2002 Aug;9(8):818-31. (PMID: 12107825)
Cerebellum. 2003;2(4):242-62. (PMID: 14964684)
Nat Cell Biol. 2005 Oct;7(10):1021-8. (PMID: 16179951)
Nat Genet. 2011 Jun;43(6):531-8. (PMID: 21572416)
Annu Rev Neurosci. 2022 Jul 8;45:151-175. (PMID: 35803588)
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E282-90. (PMID: 26729871)
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14514-9. (PMID: 22912398)
Front Neurosci. 2020 Apr 02;14:293. (PMID: 32300292)
J Biol Chem. 2006 Jan 6;281(1):447-53. (PMID: 16249176)
J Biol Chem. 1993 Feb 5;268(4):2740-8. (PMID: 8428948)
Eur J Biochem. 1992 Mar 1;204(2):939-46. (PMID: 1311684)
J Neurosci. 2014 Feb 5;34(6):2321-30. (PMID: 24501371)
J Biol Chem. 2004 Oct 8;279(41):42369-73. (PMID: 15302868)
Nat Commun. 2025 Aug 20;16(1):7550. (PMID: 40835599)
Neuroscience. 2009 Sep 15;162(4):989-1000. (PMID: 19446607)
Semin Cell Dev Biol. 2001 Feb;12(1):3-10. (PMID: 11162741)
Neurobiol Dis. 2011 Mar;41(3):650-4. (PMID: 21134458)
Cell Calcium. 2006 Nov-Dec;40(5-6):575-83. (PMID: 17034850)
Cell Death Dis. 2022 Oct 7;13(10):855. (PMID: 36207321)
Nat Genet. 2013 Apr;45(4):440-4, 444e1-2. (PMID: 23416519)
Cerebellum. 2007;6(3):268-79. (PMID: 17786823)
J Cell Biol. 1993 Mar;120(5):1147-57. (PMID: 8382206)
J Infect Dis. 2013 May 15;207(10):1600-3. (PMID: 23444010)
Neuron. 2017 Nov 15;96(4):827-838.e9. (PMID: 29056295)
J Biol Chem. 1981 Sep 25;256(18):9371-3. (PMID: 6270081)
Annu Rev Neurosci. 1992;15:403-42. (PMID: 1575449)
J Comp Neurol. 2007 Feb 20;500(6):1127-35. (PMID: 17183553)
Am J Hum Genet. 2014 Aug 7;95(2):227-34. (PMID: 25105227)
J Clin Endocrinol Metab. 2016 Feb;101(2):494-503. (PMID: 26606680)
Nat Neurosci. 2000 Nov;3 Suppl:1205-11. (PMID: 11127839)
Jpn J Physiol. 1984;34(5):781-92. (PMID: 6099855)
Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1759-63. (PMID: 7878055)
J Biol Chem. 2003 Oct 17;278(42):41246-52. (PMID: 12900399)
Contributed Indexing: Keywords: Ca2+ microdomains.; Ca2+ signaling; Cerebellar ataxia; Plasma membrane calcium ATPases
Substance Nomenclature: EC 3.6.3.8 (Plasma Membrane Calcium-Transporting ATPases)
SY7Q814VUP (Calcium)
Entry Date(s): Date Created: 20251106 Date Completed: 20251107 Latest Revision: 20251110
Update Code: 20251110
PubMed Central ID: PMC12590814
DOI: 10.1186/s13062-025-00702-2
PMID: 41199322
Database: MEDLINE
Description
Abstract:Competing Interests: Declarations. Competing interests: The authors declare no competing interests.<br />Ca²⁺ signaling is essential for neuronal development, migration, synaptic activity, spine plasticity, neurotransmitter release, membrane excitability, and long-term synaptic plasticity, as well as for the coupling between membrane depolarization and downstream signaling. Traditionally, Plasma Membrane Ca²⁺ ATPases (PMCAs) were considered high-affinity, low-capacity calcium extruders. However, recent evidence reveals that the PMCA-Neuroplastin complex facilitates ultrafast Ca²⁺ clearance at kilohertz frequencies, reshaping our understanding of calcium regulation, in particular in neurons. For bulk Ca²⁺ clearance, they are overshadowed by more powerful low-affinity/high-capacity systems on the plasma membrane. This raises key questions: what is the specific physiological and pathological role of PMCAs? Why do cells require a high-affinity/low-capacity, ATP-dependent extrusion mechanism? What is the functional meaning of the diversity of isoforms (four) and splice variants (over thirty)? And why do neurons localize distinct PMCA pumps to pre- and postsynaptic sites? The prevailing hypothesis is that PMCAs fine-tune Ca²⁺ microdomains through local regulation and interactions with specific protein partners. Finally, understanding their role in Purkinje cells (PCs) is particularly relevant, as alterations in PMCA function have been implicated in cerebellar pathology and ataxia.<br /> (© 2025. The Author(s).)
ISSN:1745-6150
DOI:10.1186/s13062-025-00702-2