A New Perspective on Determining Disease Invasion and Population Persistence in Heterogeneous Environments.

Uložené v:
Podrobná bibliografia
Názov: A New Perspective on Determining Disease Invasion and Population Persistence in Heterogeneous Environments.
Autori: Yazdanbakhsh P; Department of Mathematics and Computer Science, Rollins College, Winter Park, Florida, 32789, USA. pyazdan@rollins.edu., Anderson M; Department of Mathematics and Computer Science, Rollins College, Winter Park, Florida, 32789, USA., Shuai Z; Department of Mathematics, University of Central Florida, Orlando, Florida, 32816, USA.
Zdroj: Journal of mathematical biology [J Math Biol] 2025 Nov 05; Vol. 91 (6), pp. 75. Date of Electronic Publication: 2025 Nov 05.
Spôsob vydávania: Journal Article
Jazyk: English
Informácie o časopise: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7502105 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1416 (Electronic) Linking ISSN: 03036812 NLM ISO Abbreviation: J Math Biol Subsets: MEDLINE
Imprint Name(s): Publication: Berlin : Springer Verlag
Original Publication: Wien, New York, Springer-Verlag.
Výrazy zo slovníka MeSH: Population Dynamics*/statistics & numerical data , Models, Biological* , Communicable Diseases*/epidemiology , Communicable Diseases*/transmission , Epidemiological Models*, Humans ; Mathematical Concepts ; Animals ; Ecosystem ; Computer Simulation
Abstrakt: Competing Interests: Declarations. Conflict of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the manuscript.
We introduce a new quantity known as the network heterogeneity index, denoted by INLINEMATH , to facilitate the investigation of disease propagation and population persistence in heterogeneous environments. Our mathematical analysis reveals that this index embodies the structure of such networks, the disease or population dynamics of patches, and the dispersal between patches. We present multiple representations of the network heterogeneity index and demonstrate that INLINEMATH . Moreover, we explore the applications of INLINEMATH in epidemiology and ecology across various heterogeneous environments, highlighting its effectiveness in determining disease invasibility and population persistence.
(© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Allen LJS, Bolker BM, Lou Y, Nevai AL (2007) Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM J Appl Math 67(5):1283–1309. (PMID: 10.1137/060672522)
Altenberg L (2012) Resolvent positive linear operators exhibit the reduction phenomenon. Proc Natl Acad Sci 109(10):3705–3710. (PMID: 10.1073/pnas.1113833109)
Arino J, van den Driessche P (2003) A multi-city epidemic model. Math Popul Stud 10(3):175–193. (PMID: 10.1080/08898480306720)
Ben-Israel A, Greville TNE (2003) Generalized Inverses: Theory and Applications. Springer Science & Business Media.
Benaïm M, Schreiber SJ (2009) Persistence of structured populations in random environments. Theor Popul Biol 76(1):19–34. (PMID: 10.1016/j.tpb.2009.03.007)
Berman A, Plemmons RJ (1994) Nonnegative Matrices in The Mathematical Sciences. SIAM. (PMID: 10.1137/1.9781611971262)
Brualdi RA, Ryser HJ (1991) Combinatorial Matrix Theory. Springer. (PMID: 10.1017/CBO9781107325708)
Campbell ST, Meyer CD (2009) Generalized Inverses of Linear Transformations. SIAM. (PMID: 10.1137/1.9780898719048)
Cantrell RS, Cosner C, Lewis MA, Lou Y (2020) Evolution of dispersal in spatial population models with multiple timescales. J Math Biol 80:3–37. (PMID: 10.1007/s00285-018-1302-2)
Chen S, Shi J, Shuai Z, Wu Y (2020) Asymptotic profiles of the steady states for an sis epidemic patch model with asymmetric connectivity matrix. J Math Biol 80(7):2327–2361. (PMID: 10.1007/s00285-020-01497-8)
Chen S, Shi J, Shuai Z, Wu Y (2022) Two novel proofs of spectral monotonicity of perturbed essentially nonnegative matrices with applllications in population dynamics. SIAM J Appl Math 82(2):654–676. (PMID: 10.1137/20M1345220)
Cosner C (1996) Variability, vagueness and comparison methods for ecological models. Bull Math Biol 58(2):207–246. (PMID: 10.1007/BF02458307)
Deutsch E, Neumann M (1984) Derivatives of the perron root at an essentially nonnegative matrix and the group inverse of an m-matrix. J Math Anal Appl 102(1):1–29. (PMID: 10.1016/0022-247X(84)90198-7)
Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio [Formula: see text] in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382. (PMID: 10.1007/BF00178324)
Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7(47):873–885. (PMID: 10.1098/rsif.2009.0386)
Eisenberg MC, Shuai Z, Tien JH, van den Driessche P (2013) A cholera model in a patchy environment with water and human movement. Math. Biosci. 246(1):105–112. (PMID: 10.1016/j.mbs.2013.08.003)
Evans SN, Ralph PL, Schreiber SJ, Sen A (2013) Stochastic population growth in spatially heterogeneous environments. J Math Biol 66(3):423–476. (PMID: 10.1007/s00285-012-0514-0)
Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23(2):298–305. (PMID: 10.21136/CMJ.1973.101168)
Gao D (2019) Travel frequency and infectious diseases. SIAM J Appl Math 79(4):1581–1606. (PMID: 10.1137/18M1211957)
Gao D, Dong C (2020) Fast diffusion inhibits disease outbreaks. Proc Am Math Soc 148(4):1709–1722. (PMID: 10.1090/proc/14868)
Hastings A (1982) Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal dates. J Math Biol 16(1):49–55. (PMID: 10.1007/BF00275160)
Hastings A (1983) Can spatial variation alone lead to selection for dispersal? Theor Popul Biol 24(3):244–251. (PMID: 10.1016/0040-5809(83)90027-8)
Hening A, Nguyen DH, Yin G (2018) Stochastic population growth in spatially heterogeneous environments: the density-dependent case. J Math Biol 76:697–754. (PMID: 10.1007/s00285-017-1153-2)
Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456(7223):792–794. (PMID: 10.1038/nature07395)
Horn RA, Johnson CR (2013) Matrix Analysis, 2nd edn. Cambridge University Press, New York.
Kato T (1976) Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, second edition.
Kato T (1982) A Short Introduction to Perturbation Theory for Linear Operators. Springer-Verlag, Berlin. (PMID: 10.1007/978-1-4612-5700-4)
Kirkland S, Li C-K, Schreiber SJ (2006) On the evolution of dispersal in patchy landscapes. SIAM J Appl Math 66(4):1366–1382. (PMID: 10.1137/050628933)
Kirkland S, Neumann M (2013) Group Inverses of M-matrices and their Applications. CRC Press Boca Raton (FL).
Kirkland S, Shuai Z, van den Driessche P, Wang X (2021) Impact of varying community networks on disease invasion. SIAM J Appl Math 81(3):1166–1189. (PMID: 10.1137/20M1328762)
Langenhop CE (1971) The Laurent expansion for a nearly singular matrix. Lin Alg Appl 4(4):329–340. (PMID: 10.1016/0024-3795(71)90004-8)
Li MY, Shuai Z (2010) Global-stability problem for coupled systems of differential equations on networks. J Diff Equations 248(1):1–20. (PMID: 10.1016/j.jde.2009.09.003)
Lu M, Gao D, Huang J, Wang H (2023) Relative prevalence-based dispersal in an epidemic patch model. J Math Biol 86(4):52. (PMID: 10.1007/s00285-023-01887-8)
Lu Z, Takeuchi Y (1993) Global asymptotic behavior in single-species discrete diffusion systems. J Math Biol 32(1):67–77. (PMID: 10.1007/BF00160375)
Merris R (1994) Laplacian matrices of graphs: a survey. Lin Alg Appl 197:143–176. (PMID: 10.1016/0024-3795(94)90486-3)
Meyer CD, Stadelmaier MW (1978) Singular M-matrices and inverse positivity. Lin Alg Appl 22:139–156. (PMID: 10.1016/0024-3795(78)90065-4)
Roth G, Schreiber SJ (2014) Persistence in fluctuating environments for interacting structured populations. J Math Biol 69:1267–1317. (PMID: 10.1007/s00285-013-0739-6)
Schreiber SJ (2010) Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence. Proc R Soc B Biol Sci 277(1689):1907–1914. (PMID: 10.1098/rspb.2009.2006)
Schreiber SJ, Benaïm M, Atchadé KAS (2011) Persistence in fluctuating environments. J Math Biol 62:655–683. (PMID: 10.1007/s00285-010-0349-5)
Tien JH, Eisenberg MC, Shuai Z, van den Driessche P (2015) Disease invasion on community networks with environmental pathogen movement. J Math Biol 70(5):1065–1092. (PMID: 10.1007/s00285-014-0791-x)
van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48. (PMID: 10.1016/S0025-5564(02)00108-6)
Yang Y, Yang Q (2010) Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl 31(5):2517–2530. (PMID: 10.1137/090778766)
Contributed Indexing: Keywords: Group inverse; Laplacian matrix; Network average; Network heterogeneity index; Perron eigenvalue; SIS model; Single species; Spatial population dynamics
Entry Date(s): Date Created: 20251105 Date Completed: 20251105 Latest Revision: 20251105
Update Code: 20251105
DOI: 10.1007/s00285-025-02302-0
PMID: 41191132
Databáza: MEDLINE
Popis
Abstrakt:Competing Interests: Declarations. Conflict of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the manuscript.<br />We introduce a new quantity known as the network heterogeneity index, denoted by INLINEMATH , to facilitate the investigation of disease propagation and population persistence in heterogeneous environments. Our mathematical analysis reveals that this index embodies the structure of such networks, the disease or population dynamics of patches, and the dispersal between patches. We present multiple representations of the network heterogeneity index and demonstrate that INLINEMATH . Moreover, we explore the applications of INLINEMATH in epidemiology and ecology across various heterogeneous environments, highlighting its effectiveness in determining disease invasibility and population persistence.<br /> (© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
ISSN:1432-1416
DOI:10.1007/s00285-025-02302-0