Shifts in Microbial Thermal Traits Mitigate Heat-Induced Carbon Losses in Soils.

Gespeichert in:
Bibliographische Detailangaben
Titel: Shifts in Microbial Thermal Traits Mitigate Heat-Induced Carbon Losses in Soils.
Autoren: Brangarí AC; Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.; Institute for Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.; Microbial Biogeochemistry in Lund (MBLU), Department of Biology, Lund University, Lund, Sweden., Knorr MA; Center for Soil Biogeochemistry and Microbial Ecology, Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA., Frey SD; Center for Soil Biogeochemistry and Microbial Ecology, Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA., Rousk J; Microbial Biogeochemistry in Lund (MBLU), Department of Biology, Lund University, Lund, Sweden.; Microbial Ecology, Department of Biology, Lund University, Lund, Sweden.
Quelle: Global change biology [Glob Chang Biol] 2025 Nov; Vol. 31 (11), pp. e70579.
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
Imprint Name(s): Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
MeSH-Schlagworte: Soil Microbiology* , Soil*/chemistry , Hot Temperature* , Carbon*/metabolism , Carbon*/analysis , Global Warming* , Carbon Cycle*, Carbon Dioxide/metabolism ; Forests
Abstract: Global warming is expected to transfer carbon from soil organic matter to atmospheric CO 2 , with microbial communities playing a crucial role in regulating this exchange. While the immediate impact of temperature on microbial functions is well understood and causes soil carbon losses, the long-term response remains unclear, with losses stabilising over time, reducing the overall effect of chronic warming on soil organic carbon (SOC) stocks. Here, we examined the temperature dependence of microbial respiration and growth after 9 years of +5°C warming in a temperate forest. Using these temperature dependences and field temperature data, we modelled in situ carbon fluxes and changes in SOC stocks. Results showed that the direct effect of temperature initially increased respiration and growth, projecting a potential 31% SOC stock loss if the trend had persisted. However, the gradual optimisation of microbial traits to warming balanced the direct temperature effects, enhanced carbon use efficiency and offset CO 2 emissions. Together, these microbial trait shifts limited the heat-induced SOC loss to 15%, closely aligning with empirical observations. These findings suggest that microbial trait optimisation can moderate carbon emissions, providing a parsimonious mechanistic explanation for observations worldwide and underscoring the need to integrate microbial dynamics into models.
(© 2025 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.)
References: Commun Biol. 2020 Oct 16;3(1):584. (PMID: 33067550)
Glob Chang Biol. 2023 Mar;29(6):1574-1590. (PMID: 36448874)
Nat Ecol Evol. 2024 Dec;8(12):2277-2285. (PMID: 39317790)
mBio. 2024 May 8;15(5):e0045524. (PMID: 38526088)
J Bacteriol. 1983 Jun;154(3):1222-6. (PMID: 6853443)
Nat Microbiol. 2023 Feb;8(2):272-283. (PMID: 36732470)
Nat Microbiol. 2022 Oct;7(10):1650-1660. (PMID: 36065063)
ISME J. 2015 Jul;9(7):1481-7. (PMID: 25575305)
Science. 2017 Oct 6;358(6359):101-105. (PMID: 28983050)
Appl Environ Microbiol. 2023 Mar 29;89(3):e0154322. (PMID: 36847530)
Trends Microbiol. 2013 Dec;21(12):641-51. (PMID: 24139848)
Science. 2002 Dec 13;298(5601):2173-6. (PMID: 12481133)
FEMS Microbiol Ecol. 2011 Oct;78(1):17-30. (PMID: 21470255)
Front Microbiol. 2013 Nov 12;4:333. (PMID: 24339821)
Glob Chang Biol. 2013 Jan;19(1):45-63. (PMID: 23504720)
Glob Chang Biol. 2021 Mar;27(6):1281-1292. (PMID: 33295059)
Ecol Lett. 2023 Sep;26 Suppl 1:S81-S90. (PMID: 36965002)
Glob Chang Biol. 2019 Mar;25(3):900-910. (PMID: 30417564)
Ecol Lett. 2008 Oct;11(10):1092-100. (PMID: 18627408)
mBio. 2020 Jan 21;11(1):. (PMID: 31964725)
Glob Chang Biol. 2018 Apr;24(4):1563-1579. (PMID: 29120516)
Nat Clim Chang. 2018 Oct;8(10):885-889. (PMID: 30288176)
Glob Chang Biol. 2015 Nov;21(11):4265-77. (PMID: 26046333)
Sci Adv. 2021 May 21;7(21):. (PMID: 34020943)
Soil Biol Biochem. 2019 Jan;128:45-55. (PMID: 31579288)
Nature. 2008 Jan 17;451(7176):289-92. (PMID: 18202646)
Nature. 2006 Mar 9;440(7081):165-73. (PMID: 16525463)
Glob Chang Biol. 2025 Nov;31(11):e70579. (PMID: 41168937)
Glob Chang Biol. 2022 Oct;28(20):6050-6064. (PMID: 35838347)
Glob Chang Biol. 2018 Jul;24(7):2850-2861. (PMID: 29682877)
Grant Information: 2022-01478 Svenska Forskningsrådet Formas; CTS 22: 2131 Carl Tryggers Stiftelse för Vetenskaplig Forskning; KAW 2022.0175 Knut och Alice Wallenbergs Stiftelse; KAW 2023.0384 Knut och Alice Wallenbergs Stiftelse; DEB-1832110 National Science Foundation; DEB-1456610 National Science Foundation
Contributed Indexing: Keywords: Soil Warming × Nitrogen Addition (SWaN) Study at the Harvard Forest Long‐Term Ecological Research (LTER) site; carbon cycling; carbon use efficiency (CUE); climate change mitigation; global warming; microbial ecology; temperature sensitivity
Substance Nomenclature: 0 (Soil)
7440-44-0 (Carbon)
142M471B3J (Carbon Dioxide)
Entry Date(s): Date Created: 20251031 Date Completed: 20251031 Latest Revision: 20251103
Update Code: 20251103
PubMed Central ID: PMC12575881
DOI: 10.1111/gcb.70579
PMID: 41168937
Datenbank: MEDLINE
Beschreibung
Abstract:Global warming is expected to transfer carbon from soil organic matter to atmospheric CO <subscript>2</subscript> , with microbial communities playing a crucial role in regulating this exchange. While the immediate impact of temperature on microbial functions is well understood and causes soil carbon losses, the long-term response remains unclear, with losses stabilising over time, reducing the overall effect of chronic warming on soil organic carbon (SOC) stocks. Here, we examined the temperature dependence of microbial respiration and growth after 9 years of +5°C warming in a temperate forest. Using these temperature dependences and field temperature data, we modelled in situ carbon fluxes and changes in SOC stocks. Results showed that the direct effect of temperature initially increased respiration and growth, projecting a potential 31% SOC stock loss if the trend had persisted. However, the gradual optimisation of microbial traits to warming balanced the direct temperature effects, enhanced carbon use efficiency and offset CO <subscript>2</subscript> emissions. Together, these microbial trait shifts limited the heat-induced SOC loss to 15%, closely aligning with empirical observations. These findings suggest that microbial trait optimisation can moderate carbon emissions, providing a parsimonious mechanistic explanation for observations worldwide and underscoring the need to integrate microbial dynamics into models.<br /> (© 2025 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.)
ISSN:1365-2486
DOI:10.1111/gcb.70579