New estimation of S-coefficients for radionuclides C-11, N-13, O-15, and F-18 in male and female computational mesh-type phantom using DoseCalcs code.
Uloženo v:
| Název: | New estimation of S-coefficients for radionuclides C-11, N-13, O-15, and F-18 in male and female computational mesh-type phantom using DoseCalcs code. |
|---|---|
| Autoři: | El Ghalbzouri T; ERSN Laboratory, Department of Physics, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco. telghalbzouri@uae.ac.ma., Yerrou R; ERSN Laboratory, Department of Physics, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco., El Bakkali J; ERSN Laboratory, Department of Physics, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco.; Royal School of Military Health Service, Rabat, Morocco., El Bardouni T; ERSN Laboratory, Department of Physics, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco. |
| Zdroj: | Radiological physics and technology [Radiol Phys Technol] 2025 Oct 18. Date of Electronic Publication: 2025 Oct 18. |
| Publication Model: | Ahead of Print |
| Způsob vydávání: | Journal Article |
| Jazyk: | English |
| Informace o časopise: | Publisher: Springer Japan Country of Publication: Japan NLM ID: 101467995 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1865-0341 (Electronic) Linking ISSN: 18650333 NLM ISO Abbreviation: Radiol Phys Technol Subsets: MEDLINE |
| Imprint Name(s): | Original Publication: Tokyo : Springer Japan |
| Abstrakt: | Accurate estimation of absorbed doses in organs/tissues is essential for effective internal dosimetry. This is especially the case for positron-emission tomography-utilized radiopharmaceuticals that contain positron-emitting radionuclides. To achieve this, it is essential to calculate S-coefficients (S), basic coefficients representing the absorbed dose in the target organ per unit of nuclear transformation in the source organ. In addition, as the evolution of computational phantoms from stylized, voxelized, to mesh-type models continues, updating the S-coefficients to correspond with the new phantom generation becomes required. We employed the DoseCalcs Monte Carlo platform to estimate S-coefficients for four positron-emitting radionuclides, namely, C-11, N-13, O-15, and F-18. Based on decay and energy data for emitted positrons that were obtained from ICRP Publication 107, the simulations involved 24 regions as internal radiation sources in the male and female mesh-type phantoms of the International Commission on Radiological Protection (ICRP). We calculated the S-coefficients for 25 radiosensitive target regions. The graphs of S-coefficients for all target INLINEMATH source pairs exhibit similar trends for the four radionuclides. We compared the results with the OpenDose database, which calculated S-coefficients for voxelized phantoms. The comparison showed that the S-coefficients and the OpenDose voxelized values were very close for most target regions in the mesh-type phantoms. However, discrepancies were observed in specific cases, such as thyroid INLINEMATH UBCs and liver INLINEMATH HeW. These discrepancies arise primarily from the differences in organs/tissues locations and shapes, as well as the differences in material composition, which is distributed across the large inter-distance between the source and target, contributing to significant variations. (© 2025. The Author(s), under exclusive licence to Japanese Society of Radiological Technology and Japan Society of Medical Physics.) |
| Competing Interests: | Declarations. Conflict of interest: The authors declare that they have no conflict of interest. Ethical approval: This research does not involve human participants and animals. |
| References: | Ollinger JM, Fessler JA. Positron-emission tomography. IEEE Signal Process Mag. 1997;14(1):43–55. (PMID: 10.1109/79.560323) Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46(1 suppl):4S-12S. (PMID: 15653646) Firoozabadi MM, Jimabadi E, Ghorbani M, Behmadi M. Determination of task group 43 dosimetric parameters for CSM40 137 CS source for use in brachytherapy. Radiol Phys Technol. 2018;11:82–90. (PMID: 10.1007/s12194-017-0440-329299819) Czernin J, Schelbert H. PET/CT imaging: facts, opinions, hopes, and questions. J Nucl Med. 2004;45(1 suppl):1S-3S. Kubo H, Nemoto A, Ukon N, Ito H. Evaluation of a model-based attenuation correction method on whole-body 18 F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging. Radiol Phys Technol. 2021;14:70–81. (PMID: 10.1007/s12194-020-00605-z33400065) Jackson S, Dolphin G. The estimation of internal radiation dose from metabolic and urinary excretion data for a number of important radionuclides. Health Phys. 1966;12(4):481–500. (PMID: 10.1097/00004032-196604000-000035335497) Del Guerra A, Bardies M, Belcari N, Caruana CJ, Christofides S, Erba P, et al. Curriculum for education and training of medical physicists in nuclear medicine: recommendations from the EANM physics committee, the EANM dosimetry committee and EFOMP. Physica Med. 2013;29(2):139–62. (PMID: 10.1016/j.ejmp.2012.06.004) Endo M. History of medical physics. Radiol Phys Technol. 2021;14:345–57. (PMID: 10.1007/s12194-021-00642-234727326) Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, et al. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP. 2015;44:7–321. (PMID: 10.1177/014664531455801926069086) Gutfilen B, Valentini G, et al. Radiopharmaceuticals in nuclear medicine: recent developments for SPECT and PET studies. BioMed Res Int. 2014;2014:426892. Snyder W. “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet no. 11, 1975. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med. 2009;50(3):477–84. (PMID: 10.2967/jnumed.108.05603619258258) El Ghalbzouri T, El Bardouni T, El Bakkali J, Ziani H, Doudouh A. Validation of the DoseCalcs Monte Carlo code for estimating the 18F S-values for ICRP adult and 15-year-old male and female phantoms. Radiol Phys Technol. 2023;16(2):212–26. (PMID: 10.1007/s12194-023-00709-236917405) Kroese DP, Rubinstein RY. Monte Carlo methods. Wiley Interdiscipl Rev Comput Stat. 2012;4(1):48–58. (PMID: 10.1002/wics.194) Takahashi A, Kajiya R, Baba S, Sasaki M. Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT. Radiol Phys Technol. 2023;16(1):102–8. (PMID: 10.1007/s12194-023-00702-936719548) Harrison J, Balonov M, Bochud F, Martin C, Menzel H, Ortiz-Lopez P, et al. ICRP publication 147: use of dose quantities in radiological protection. Ann ICRP. 2021;50(1):9–82. (PMID: 10.1177/014664532091186433653178) Mustra M, Delac K, Grgic M. Overview of the DICOM standard. In: 2008 50th International Symposium ELMAR, vol 1. IEEE; 2008. p. 39–44. Zankl M. Adult male and female reference computational phantoms (ICRP publication 110). Jpn J Health Phys. 2010;45(4):357–69. (PMID: 10.5453/jhps.45.357) El Ghalbzouri T, El Bardouni T, El Bakkali J. S-values estimation of positron-emitting radionuclides in the ICRP voxel-based adult male organs using a new Geant4-based code DoseCalcs: validation study. Phys Eng Sci Med. 2023;46(2):645–57. (PMID: 10.1007/s13246-023-01239-236940065) Yamaguchi H. Estimation of internal radiation dose for various physiques using MIRD adult absorbed fractions. Acta Radiol Oncol Radiat Phys Biol. 1978;17(5):429–39. (PMID: 10.3109/02841867809128253726948) Streffer C. The ICRP 2007 recommendations. Radiat Prot Dosim. 2007;127(1–4):2–7. (PMID: 10.1093/rpd/ncm246) Kim CH, Yeom YS, Petoussi-Henss N, Zankl M, Bolch WE, Lee C, et al. ICRP publication 145: adult mesh-type reference computational phantoms. Ann ICRP. 2020;49:13–201. (PMID: 10.1177/014664531989360533231095) Kwon T-E, Han H, Choi C, Kitahara CM, Lee C. Enhanced internal dosimetry for alimentary tract organs in nuclear medicine based on the ICRP mesh-type reference phantoms. Radiat Phys Chem. 2024;224:112009. (PMID: 10.1016/j.radphyschem.2024.112009) Gustafsson J, Taprogge J. Future trends for patient-specific dosimetry methodology in molecular radiotherapy. Physica Medica. 2023;115:103165. ICRP. ICRP publication 103. Ann ICRP. 2007;37(2.4):2. Ghalbzouri TE, Bardouni TE, Bakkali JE, Satti H, Arectout A, Berriban I, et al. Photon-specific absorbed fraction estimates in stylized ORNL and voxelized ICRP adult male phantoms using a new developed Geant4-based code “DoseCalcs": a validation study. Radiol Phys Technol. 2022;15(4):323-39. Eckerman K, Endo A. ICRP publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38(3):7–96. (PMID: 19285593) Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506:250–303. (PMID: 10.1016/S0168-9002(03)01368-8) Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in Geant4. Nucl Instrum Methods Phys Res A. 2016;835:186–225. (PMID: 10.1016/j.nima.2016.06.125) El Ghalbzouri T, El Bardouni T, El Bakkali J, El Hajjaji O, Satti H, Arectout A, Hadouachi M, Yerru R. Re-evaluation of 18 F-FDG absorbed and effective dose in adult and pediatric phantoms using DoseCalcs Monte Carlo platform: a validation study. Phys Eng Sci Med. 2024;48(1):87-102. Cullen DE, Hubbell JH, Kissel L. EPDL97: the evaluated photo data Library97 version. Tech. Rep., Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 1997. Perkins S, Cullen D, Seltzer S, et al. Tables and graphs of electron-interaction cross-sections from 10 eV to 100 GeV derived from the LLNL evaluated electron data library (EEDL), [Formula: see text] 1–100. UCRL-50400. 1991;31:21–4. Perkins S, Cullen D, Chen M, Rathkopf J, Scofield J, Hubbell J. Tables and graphs of atomic subshell and relaxation data derived from the LLNL evaluated atomic data library (EADL), [Formula: see text] 1–100. Tech. Rep., Lawrence Livermore National Lab., CA (United States), 1991. Chauvie S, Guatelli S, Ivanchenko V, Longo F, Mantero A, Mascialino B, Nieminen P, Pandola L, Parlati S, Peralta L, et al. Geant4 low energy electromagnetic physics. In: IEEE Symposium Conference Record Nuclear Science 2004, vol. 3. IEEE; 2004. p. 1881–5. El Ghalbzouri T, El Bardouni T, El Bakkali J, El-Bouzaidi MD, Satti H. New estimation of electron and photon internal dose coefficients for new adult female computational phantom using DoseCalcs. Radiat Phys Chem. 2025;234:112705. Chauvin M, Borys D, Botta F, Bzowski P, Dabin J, Denis-Bacelar AM, et al. OpenDose: open-access resource for nuclear medicine dosimetry. J Nucl Med. 2020;61:1514–9. (PMID: 10.2967/jnumed.119.240366321699127539649) Gholami S, Longo F, Nedaie HA, Berti A, Mousavi M, Meigooni AS. Application of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields. Med Dosim. 2018;43(3):214–23. (PMID: 10.1016/j.meddos.2017.08.00728988675) Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega PG, et al. The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014;120:211–4. (PMID: 10.1016/j.nds.2014.07.049) Kawrakow I, Rogers D. The EGSNRC code system. NRC Report PIRS-701, NRC, Ottawa, vol 17. 2000. Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, Dixon DA, Martz RL, Hughes HG, Cox LJ, Zukaitis AJ, Armstrong JC, Forster RA, Casswell L. MCNP version 6.2 release notes. Tech. rep., 2018. ...Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61. (PMID: 10.1088/0031-9155/49/19/007155524163267383) Salvat F, Fernández-Varea JM, Sempau J, et al. Penelope-2008: a code system for monte carlo simulation of electron and photon transport. In: Workshop Proceedings, Barcelona, Spain, vol 30, 2008. Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7:1–10. (PMID: 10.1186/s13550-017-0339-3) |
| Contributed Indexing: | Keywords: DoseCalcs; Geant4; Internal dosimetry; Mesh-type phantom; Monte Carlo; Positron-emitting radionuclide; S-coefficient |
| Entry Date(s): | Date Created: 20251018 Latest Revision: 20251018 |
| Update Code: | 20251018 |
| DOI: | 10.1007/s12194-025-00978-z |
| PMID: | 41108355 |
| Databáze: | MEDLINE |
| Abstrakt: | Accurate estimation of absorbed doses in organs/tissues is essential for effective internal dosimetry. This is especially the case for positron-emission tomography-utilized radiopharmaceuticals that contain positron-emitting radionuclides. To achieve this, it is essential to calculate S-coefficients (S), basic coefficients representing the absorbed dose in the target organ per unit of nuclear transformation in the source organ. In addition, as the evolution of computational phantoms from stylized, voxelized, to mesh-type models continues, updating the S-coefficients to correspond with the new phantom generation becomes required. We employed the DoseCalcs Monte Carlo platform to estimate S-coefficients for four positron-emitting radionuclides, namely, C-11, N-13, O-15, and F-18. Based on decay and energy data for emitted positrons that were obtained from ICRP Publication 107, the simulations involved 24 regions as internal radiation sources in the male and female mesh-type phantoms of the International Commission on Radiological Protection (ICRP). We calculated the S-coefficients for 25 radiosensitive target regions. The graphs of S-coefficients for all target INLINEMATH source pairs exhibit similar trends for the four radionuclides. We compared the results with the OpenDose database, which calculated S-coefficients for voxelized phantoms. The comparison showed that the S-coefficients and the OpenDose voxelized values were very close for most target regions in the mesh-type phantoms. However, discrepancies were observed in specific cases, such as thyroid INLINEMATH UBCs and liver INLINEMATH HeW. These discrepancies arise primarily from the differences in organs/tissues locations and shapes, as well as the differences in material composition, which is distributed across the large inter-distance between the source and target, contributing to significant variations.<br /> (© 2025. The Author(s), under exclusive licence to Japanese Society of Radiological Technology and Japan Society of Medical Physics.) |
|---|---|
| ISSN: | 1865-0341 |
| DOI: | 10.1007/s12194-025-00978-z |
Full Text Finder
Nájsť tento článok vo Web of Science