Surface plasmon resonance microscopy reveals N-glycosylation driven modulation of affinity and avidity of ErbB receptors in whole single pancreatic cancer cells.

Gespeichert in:
Bibliographische Detailangaben
Titel: Surface plasmon resonance microscopy reveals N-glycosylation driven modulation of affinity and avidity of ErbB receptors in whole single pancreatic cancer cells.
Autoren: Aguilar Díaz de León JS; Biosensing Instrument Inc., 1007 E. Warner Rd, Tempe, Az, 85284, United States., Thirumurthy M; Biosensing Instrument Inc., 1007 E. Warner Rd, Tempe, Az, 85284, United States., Ly N; Biosensing Instrument Inc., 1007 E. Warner Rd, Tempe, Az, 85284, United States.
Quelle: Glycobiology [Glycobiology] 2025 Nov 29; Vol. 35 (12).
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: IRL Press at Oxford University Press Country of Publication: England NLM ID: 9104124 Publication Model: Print Cited Medium: Internet ISSN: 1460-2423 (Electronic) Linking ISSN: 09596658 NLM ISO Abbreviation: Glycobiology Subsets: MEDLINE
Imprint Name(s): Original Publication: Oxford ; New York : IRL Press at Oxford University Press, c1990-
MeSH-Schlagworte: Pancreatic Neoplasms*/metabolism , Pancreatic Neoplasms*/pathology , ErbB Receptors*/metabolism , ErbB Receptors*/immunology , Receptor, ErbB-2*/metabolism , Receptor, ErbB-3*/metabolism, Humans ; Glycosylation ; Surface Plasmon Resonance ; Cell Line, Tumor ; Trastuzumab
Abstract: Glycans found on the ErbB family of receptors (HER1, HER2, and HER3) represent promising targets for cancer treatment. Characterization and full quantification of the bivalent kinetic interactions of therapeutic antibodies against the ErbB family of receptors directly in their native cancer cellular environment represent a unique strategy to help overcome cancer drug resistance and to the development of more effective therapeutic drugs. In this study, surface plasmon resonance microscopy (SPRM) was implemented in a unique and innovative manner to quantify the bivalent kinetic interactions of monoclonal antibodies targeting HER1 (EFGR), HER2 and HER3 directly on whole BXPC3 pancreatic cancer cells under a glycosylated (native) and deglycosylated cellular environment. Results revealed in unprecedented detail that both the single-arm affinity and double-arm stronger avidity modes of binding interaction could be observed. For bivalent Cetuximab (anti-HER1) KDs of 151 nM and 4.6 nM were observed, for bivalent Herceptin (anti-HER2) KDs of 2 nM and 0.1 nM were observed, and for bivalent anti-HER3 KDs of 13 nM and 1.3 nM were observed. However, upon enzymatic N-deglycosylation of BXPC3 cells, HER1 and HER3 demonstrated significant increase in affinity of 1000-fold and 21-fold, respectively. In contrast, HER2 kinetic interactions were negligibly influenced by cellular N-deglycosylation of BXPC3 cells. This study highlights for the first time SPRM's unique ability to characterize the bivalent heterogeneous kinetic interactions of monoclonal antibodies with ErbB receptors on whole cancer cells, and to quantify the shielding influence of pancreatic cancer cell surface N-glycosylation on these interactions.
(© The Author(s) 2025. Published by Oxford University Press.)
References: Cancer Cell Int. 2021 Aug 10;21(1):420. (PMID: 34376189)
MAbs. 2024 Jan-Dec;16(1):2361585. (PMID: 38849969)
Cancer Med. 2024 Dec;13(23):e70474. (PMID: 39651731)
Cancers (Basel). 2021 Nov 16;13(22):. (PMID: 34830899)
Mol Pharm. 2023 Apr 3;20(4):2094-2104. (PMID: 36939457)
J Clin Invest. 2007 Aug;117(8):2051-8. (PMID: 17671639)
Technol Cancer Res Treat. 2021 Jan-Dec;20:15330338211019442. (PMID: 34060360)
Int J Mol Sci. 2023 Jul 27;24(15):. (PMID: 37569408)
J Transl Med. 2013 Jan 02;11:1. (PMID: 23281771)
J Pharmacol Exp Ther. 2023 Jul;386(1):35-44. (PMID: 37142444)
Expert Opin Ther Targets. 2012 Jan;16(1):15-31. (PMID: 22239438)
Cancer Cell. 2024 Jan 8;42(1):101-118.e11. (PMID: 38157863)
Eur J Cancer. 2001 Jan;37 Suppl 1:S18-24. (PMID: 11167087)
Diagnostics (Basel). 2021 Apr 04;11(4):. (PMID: 33916543)
Glycobiology. 2015 Dec;25(12):1325-34. (PMID: 26263923)
J Proteome Res. 2021 Jan 1;20(1):485-497. (PMID: 33073996)
Front Pharmacol. 2021 Mar 19;12:625084. (PMID: 33815107)
Kidney Int. 2017 Jun;91(6):1410-1419. (PMID: 28187981)
Cancer Res. 2011 Mar 15;71(6):2250-9. (PMID: 21406401)
Mol Cancer Ther. 2020 Jul;19(7):1423-1435. (PMID: 32371585)
MAbs. 2021 Jan-Dec;13(1):1914883. (PMID: 33876707)
Oncol Lett. 2019 Mar;17(3):2569-2575. (PMID: 30854032)
PLoS One. 2023 Jan 20;18(1):e0280590. (PMID: 36662882)
Anal Chem. 2022 Dec 13;94(49):17303-17311. (PMID: 36454605)
FEBS J. 2008 Oct;275(20):4967-79. (PMID: 18795950)
Antibodies (Basel). 2021 Feb 04;10(1):. (PMID: 33557368)
Glycobiology. 2024 Apr 1;34(3):. (PMID: 38109791)
J Exp Clin Cancer Res. 2019 Jan 23;38(1):31. (PMID: 30674340)
Trends Cancer. 2022 Jun;8(6):448-455. (PMID: 35260378)
Sci Rep. 2019 Nov 7;9(1):16168. (PMID: 31700025)
Cancer Biol Ther. 2013 Apr;14(4):304-14. (PMID: 23358468)
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21295-300. (PMID: 23236171)
Glycobiology. 2023 Dec 30;33(12):1182-1192. (PMID: 37792857)
Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16. (PMID: 16829981)
PLoS One. 2011 Apr 22;6(4):e17887. (PMID: 21526167)
Front Pediatr. 2015 Jun 11;3:54. (PMID: 26125015)
Oncogene. 2021 May;40(21):3719-3733. (PMID: 33947960)
Br J Cancer. 2016 Jun 14;114(12):1376-86. (PMID: 27187683)
Int J Cancer. 2007 May 1;120(9):1874-82. (PMID: 17266042)
Mol Cancer Ther. 2006 Aug;5(8):2051-9. (PMID: 16928826)
J Biomed Sci. 2020 Jul 3;27(1):77. (PMID: 32620165)
J Cell Mol Med. 2021 Jun;25(12):5443-5456. (PMID: 33955688)
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15039-44. (PMID: 20696930)
Mol Oncol. 2014 Sep 12;8(6):1084-94. (PMID: 24913799)
Sci Transl Med. 2018 Oct 17;10(463):. (PMID: 30333240)
Anal Chem. 2015 Oct 6;87(19):9960-5. (PMID: 26368334)
J Biol Chem. 2015 Oct 9;290(41):24689-704. (PMID: 26260789)
Glycobiology. 2017 Jul 1;27(7):619-624. (PMID: 28460052)
Bioorg Chem. 2020 Jun;99:103811. (PMID: 32278207)
Bio Protoc. 2018 Dec 05;8(23):e3096. (PMID: 34532543)
Sci Rep. 2017 Feb 22;7:43006. (PMID: 28223691)
Oncotarget. 2016 Apr 12;7(15):19395-413. (PMID: 26539643)
Cancer Cell. 2019 Aug 12;36(2):168-178.e4. (PMID: 31327656)
J Cancer. 2021 Jun 16;12(16):4993-5004. (PMID: 34234868)
Int J Mol Sci. 2023 Jul 05;24(13):. (PMID: 37446288)
PLoS One. 2024 May 22;19(5):e0304154. (PMID: 38776309)
J Exp Clin Cancer Res. 2021 Jan 9;40(1):25. (PMID: 33422093)
MAbs. 2023 Jan-Dec;15(1):2149053. (PMID: 36453702)
Anal Bioanal Chem. 2018 Dec;410(30):7837-7848. (PMID: 30328504)
Expert Opin Biol Ther. 2019 Oct;19(10):1085-1095. (PMID: 30541352)
Anal Biochem. 2023 Nov 1;680:115317. (PMID: 37699507)
Front Mol Biosci. 2021 Jan 14;7:615565. (PMID: 33521057)
Clin Cancer Res. 2012 Dec 15;18(24):6784-91. (PMID: 23092874)
Nat Commun. 2020 Jun 4;11(1):2817. (PMID: 32499547)
Sci Rep. 2014 Oct 14;4:6609. (PMID: 25312029)
Crit Rev Oncol Hematol. 2021 Oct;166:103454. (PMID: 34455092)
Cancers (Basel). 2011 Mar 24;3(2):1513-26. (PMID: 24212772)
Cancer Res. 2010 Feb 1;70(3):1204-14. (PMID: 20103628)
Structure. 2015 Sep 1;23(9):1573-1583. (PMID: 26211613)
Cancer Res. 2005 Jan 15;65(2):473-82. (PMID: 15695389)
Angew Chem Int Ed Engl. 2020 Jan 27;59(5):1776-1785. (PMID: 31531917)
Cancer Cell. 2018 Feb 12;33(2):187-201.e10. (PMID: 29438695)
Cancers (Basel). 2023 Jan 13;15(2):. (PMID: 36672453)
Nat Rev Cancer. 2005 Jul;5(7):526-42. (PMID: 16069816)
Analyst. 2015 Mar 7;140(5):1442-7. (PMID: 25623139)
J Immunol. 1989 Aug 1;143(3):931-8. (PMID: 2787352)
J Biol Chem. 2021 Jan-Jun;296:100057. (PMID: 33172893)
Comput Struct Biotechnol J. 2021 Feb 27;19:1325-1334. (PMID: 33738081)
Glycobiology. 2017 Jan;27(1):3-49. (PMID: 27558841)
Cytojournal. 2025 Jun 14;22:62. (PMID: 40708831)
Oncotarget. 2017 Jan 17;8(3):3980-4000. (PMID: 28002810)
Grant Information: R42 GM143986 United States GM NIGMS NIH HHS; R42 GM154550 United States GM NIGMS NIH HHS; R42GM154550 National Institute of Health; R42GM143986 National Institute of Health
Contributed Indexing: Keywords: affinity/avidity/ErbB receptors/ /N-glycosylation/surface plasmon resonance microscopy (SPRM)
Substance Nomenclature: EC 2.7.10.1 (ErbB Receptors)
EC 2.7.10.1 (Receptor, ErbB-2)
EC 2.7.10.1 (Receptor, ErbB-3)
EC 2.7.10.1 (EGFR protein, human)
EC 2.7.10.1 (ERBB2 protein, human)
EC 2.7.10.1 (ERBB3 protein, human)
P188ANX8CK (Trastuzumab)
Entry Date(s): Date Created: 20251018 Date Completed: 20251201 Latest Revision: 20251204
Update Code: 20251204
PubMed Central ID: PMC12665891
DOI: 10.1093/glycob/cwaf066
PMID: 41108118
Datenbank: MEDLINE
Beschreibung
Abstract:Glycans found on the ErbB family of receptors (HER1, HER2, and HER3) represent promising targets for cancer treatment. Characterization and full quantification of the bivalent kinetic interactions of therapeutic antibodies against the ErbB family of receptors directly in their native cancer cellular environment represent a unique strategy to help overcome cancer drug resistance and to the development of more effective therapeutic drugs. In this study, surface plasmon resonance microscopy (SPRM) was implemented in a unique and innovative manner to quantify the bivalent kinetic interactions of monoclonal antibodies targeting HER1 (EFGR), HER2 and HER3 directly on whole BXPC3 pancreatic cancer cells under a glycosylated (native) and deglycosylated cellular environment. Results revealed in unprecedented detail that both the single-arm affinity and double-arm stronger avidity modes of binding interaction could be observed. For bivalent Cetuximab (anti-HER1) KDs of 151 nM and 4.6 nM were observed, for bivalent Herceptin (anti-HER2) KDs of 2 nM and 0.1 nM were observed, and for bivalent anti-HER3 KDs of 13 nM and 1.3 nM were observed. However, upon enzymatic N-deglycosylation of BXPC3 cells, HER1 and HER3 demonstrated significant increase in affinity of 1000-fold and 21-fold, respectively. In contrast, HER2 kinetic interactions were negligibly influenced by cellular N-deglycosylation of BXPC3 cells. This study highlights for the first time SPRM's unique ability to characterize the bivalent heterogeneous kinetic interactions of monoclonal antibodies with ErbB receptors on whole cancer cells, and to quantify the shielding influence of pancreatic cancer cell surface N-glycosylation on these interactions.<br /> (© The Author(s) 2025. Published by Oxford University Press.)
ISSN:1460-2423
DOI:10.1093/glycob/cwaf066