Electroencephalography, magnetoencephalography and pain: where do we stand, and where are we going.
Uloženo v:
| Název: | Electroencephalography, magnetoencephalography and pain: where do we stand, and where are we going. |
|---|---|
| Autoři: | Garcia-Larrea L; Neuropain Lab, Lyon Centre for Neuroscience (CNRL), INSERM U1028 & University Claude Bernard Lyon 1, Lyon, France., André-Obadia N; Neuropain Lab, Lyon Centre for Neuroscience (CNRL), INSERM U1028 & University Claude Bernard Lyon 1, Lyon, France.; Department of Functional Neurology & Epileptology, Neurological University Hospital, Lyon, France. |
| Zdroj: | Pain [Pain] 2025 Nov 01; Vol. 166 (11S), pp. S65-S70. |
| Způsob vydávání: | Journal Article; Review |
| Jazyk: | English |
| Informace o časopise: | Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 7508686 Publication Model: Print Cited Medium: Internet ISSN: 1872-6623 (Electronic) Linking ISSN: 03043959 NLM ISO Abbreviation: Pain Subsets: MEDLINE |
| Imprint Name(s): | Publication: 2015- : Hagerstown, MD : Lippincott Williams & Wilkins Original Publication: Amsterdam, Elsevier/North-Holland. |
| Výrazy ze slovníku MeSH: | Magnetoencephalography*/trends , Magnetoencephalography*/methods , Electroencephalography*/trends , Electroencephalography*/methods , Pain*/physiopathology , Pain*/diagnosis , Brain*/physiopathology, Humans |
| Abstrakt: | Abstract: Considerable progress has been made over the past decade in the use, practicality, and clinical relevance of electroencephalography (EEG) and magnetoencephalography (MEG)-derived data, improving our understanding of cortical nociceptive processing, the transition from nociception to conscious pain, and its cognitive-emotional modulations. Multimodal responses to heat, cold, and tactile/electrical stimuli, combined with autonomic reactions, provide objective sensory tests that bypass the limitations of verbal responses, while emerging approaches to spontaneous EEG/MEG analysis are changing the game in the still elusive area of ongoing pain. We can expect that all departments involved in the assessment of chronic pain will gradually be able to access these powerful and flexible techniques. (Copyright © 2025 International Association for the Study of Pain.) |
| References: | Afnan J, von Ellenrieder N, Lina JM, Pellegrino G, Arcara G, Cai Z, Hedrich T, Abdallah C, Khajehpour H, Frauscher B, Gotman J, Grova C. Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas. Neuroimage 2023;274:120158. Aiyer R, Novakovic V, Barkin RL. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad Med 2016;128:656–64. Anderson K, Stein S, Suen H, Purcell M, Belci M, McCaughey E, McLean R, Khine A, Vuckovic A. Generalisation of EEG-based pain biomarker classification for predicting central neuropathic pain in subacute spinal cord injury. Biomedicines 2025;13:213. Atherton DD, Facer P, Roberts KM, Misra VP, Chizh BA, Bountra C, Anand P. Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol 2007;7:21. Attal N, Masselin-Dubois A, Martinez V, Jayr C, Albi A, Fermanian J, Bouhassira D, Baudic S. Does cognitive functioning predict chronic pain? Results from a prospective surgical cohort. Brain 2014;137:904–17. Bastuji H, Frot M, Perchet C, Magnin M, Garcia-Larrea L. Pain networks from the inside: spatiotemporal analysis of brain responses leading from nociception to conscious perception. Hum Brain Mapp 2016;37:4301–15. Bazanova OM, Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev 2014;44:94–110. Blume WT. Drug effects on EEG. J Clin Neurophysiol 2006;23:306–11. Boord P, Siddall PJ, Tran Y, Herbert D, Middleton J, Craig A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 2008;46:118–23. Bradley C, Joyce N, Garcia-Larrea L. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG. Brain Struct Funct 2016;221:421–31. Bradley C, Bastuji H, Garcia-Larrea L. Evidence-based source modeling of nociceptive cortical responses: a direct comparison of scalp and intracranial activity in humans. Hum Brain Mapp 2017;38:6083–95. Bucsea O, Rupawala M, Shiff I, Wang X, Meek J, Fitzgerald M, Fabrizi L, Pillai Riddell R, Jones L. Clinical thresholds in pain-related facial activity linked to differences in cortical network activation in neonates. PAIN 2023;164:1039–50. Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res 1976;25:103–7. Case M, Shirinpour S, Zhang H, Datta YH, Nelson SC, Sadak KT, Gupta K, He B. Increased theta band EEG power in sickle cell disease patients. J Pain Res 2018;11:67–76. Chouchou F, Fauchon C, Perchet C, Garcia-Larrea L. An approach to the detection of pain from autonomic and cortical correlates. Clin Neurophysiol 2024;166:152–65. Chowdhury NS, Bi C, Furman AJ, Chiang AKI, Skippen P, Si E, Millard SK, Margerison SM, Spies D, Keaser ML, Da Silva JT, Chen S, Schabrun SM, Seminowicz DA. Predicting individual pain sensitivity using a novel cortical biomarker signature. JAMA Neurol 2025;82:237–46. Convers P, Peyron R, Creac'h C, Beschet A, Laurent B, Garcia-Larrea L. A hidden mesencephalic variant of central pain. Eur J Pain 2020;24:1393–9. Corlier J, Tadayonnejad R, Wilson AC, Lee JC, Marder KG, Ginder ND, Wilke SA, Levitt J, Krantz D, Leuchter AF. Repetitive transcranial magnetic stimulation treatment of major depressive disorder and comorbid chronic pain: response rates and neurophysiologic biomarkers. Psychol Med 2023;53:823–32. De Martino E, Gregoret L, Zandalasini M, Graven-Nielsen T. Slowing in peak-alpha frequency recorded after experimentally-induced muscle pain is not significantly different between high and low pain-sensitive subjects. J Pain 2021;22:1722–32. de Tommaso M, Lo Sito L, Di Fruscolo O, Sardaro M, Pia Prudenzano M, Lamberti P, Livrea P. Lack of habituation of nociceptive evoked responses and pain sensitivity during migraine attack. Clin Neurophysiol 2005;116:1254–64. de Tommaso M, Ambrosini A, Brighina F, Coppola G, Perrotta A, Pierelli F, Sandrini G, Valeriani M, Marinazzo D, Stramaglia S, Schoenen J. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014;10:144–55. de Vries M, Wilder-Smith OH, Jongsma ML, van den Broeke EN, Arns M, van Goor H, van Rijn CM. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain. J Pain Res 2013;6:815–24. Di Stefano G, La Cesa S, Leone C, Pepe A, Galosi E, Fiorelli M, Valeriani M, Lacerenza M, Pergolini M, Biasiotta A, Cruccu G, Truini A. Diagnostic accuracy of laser-evoked potentials in diabetic neuropathy. PAIN 2017;158:1100–7. Fabig SC, Kersebaum D, Lassen J, Sendel M, Jendral S, Muntean A, Baron R, Hüllemann P. A modality-specific somatosensory evoked potential test protocol for clinical evaluation: a feasibility study. Clin Neurophysiol 2021;132:3104–15. Fallon N, Chiu Y, Nurmikko T, Stancak A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur J Pain 2018;22:49–57. Fardo F, Auksztulewicz R, Allen M, Dietz MJ, Roepstorff A, Friston KJ. Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex. Neuroimage 2017;153:109–21. Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. PAIN 2022;163:1291–302. Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal similarity of pain brain networks. Adv Neurobiol 2024;36:639–57. Frot M, Mauguière F, Magnin M, Garcia-Larrea L. Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 2008;28:944–52. Frot M, Faillenot I, Mauguière F. Processing of nociceptive input from posterior to anterior insula in humans. Hum Brain Mapp 2014;35:5486–99. Furman AJ, Meeker TJ, Rietschel JC, Yoo S, Muthulingam J, Prokhorenko M, Keaser ML, Goodman RN, Mazaheri A, Seminowicz DA. Cerebral peak alpha frequency predicts individual differences in pain sensitivity. Neuroimage 2018;167:203–10. Furman AJ, Thapa T, Summers SJ, Cavaleri R, Fogarty JS, Steiner GZ, Schabrun SM, Seminowicz DA. Cerebral peak alpha frequency reflects average pain severity in a human model of sustained, musculoskeletal pain. J Neurophysiol 2019;122:1784–93. Garcia-Larrea L, Bastuji H. Pain and consciousness. Prog Neuropsychopharmacol Biol Psychiatry 2018;87:193–9. Garcia-Larrea L, Hagiwara K. Electrophysiology in diagnosis and management of neuropathic pain. Rev Neurol 2019;175:26–37. Garcia-Larrea L, Mauguière F. Pain syndromes and the parietal lobe. Handb Clin Neurol 2018;151:207–23. Garcia-Larrea L, Convers P, Magnin M, André-Obadia N, Peyron R, Laurent B, Mauguière F. Laserevoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 2002;125:2766–81. Garcia-Larrea L, Perchet C, Creac'h C, Convers P, Peyron R, Laurent B, Mauguière F, Magnin M. Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain 2010;133:2528–39. Gendre T, Lefaucheur JP, Nordine T, Baba-Amer Y, Authier FJ, Devaux J, Créange A. Characterizing acute-onset small fiber neuropathy. Neurol Neuroimmunol Neuroinflamm 2024;11:e200195. González-Villar AJ, Triñanes Y, Gómez-Perretta C, Carrillo-de-la-Peña MT. Patients with fibromyalgia show increased beta connectivity across distant networks and microstates alterations in resting-state electroencephalogram. Neuroimage 2020;223:117266. Gopal J, Bao J, Harland T, Pilitsis JG, Paniccioli S, Grey R, Briotte M, McCarthy K, Telkes I. Machine learning predicts spinal cord stimulation surgery outcomes and reveals novel neural markers for chronic pain. Sci Rep 2025;15:9279. Gram M, Graversen C, Olesen AE, Drewes AM. Machine learning on encephalographic activity may predict opioid analgesia. Eur J Pain 2015;19:1552–61. Gram M, Erlenwein J, Petzke F, Falla D, Przemeck M, Emons MI, Reuster M, Olesen SS, Drewes AM. Prediction of postoperative opioid analgesia using clinical-experimental parameters and electroencephalography. Eur J Pain 2017;21:264–77. Han Y, Valentini E, Halder S. Classification of tonic pain experience based on phase connectivity in the alpha frequency band of the electroencephalogram using convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2022;2022:3542–5. Han Q, Wang H, Lu X, Li Y, Guo Y, Zhao X, Feng Y, Hu L. Preoperative resting-state electrophysiological signals predict acute but not chronic postoperative pain. Eur J Pain 2025;29:e4757. Harkins SW, Price DD, Roy A, Itskovich VV, Fei DY. Somatosensory evoked potentials associated with thermal activation of type II Adelta mechanoheat nociceptive afferents. Int J Neurosci 2000;104:93–111. Heitmann H, Gil Ávila C, Nickel MM, Ta Dinh S, May ES, Tiemann L, Hohn VD, Tölle TR, Ploner M. Longitudinal resting-state electroencephalography in patients with chronic pain undergoing interdisciplinary multimodal pain therapy. PAIN 2022;163:e997–1005. Heitmann H, Zebhauser PT, Hohn VD, Henningsen P, Ploner M. Resting-state EEG and MEG biomarkers of pathological fatigue—a transdiagnostic systematic review. Neuroimage Clin 2023;39:103500. Hirayama T, Dostrovsky JO, Gorecki J, Tasker RR, Lenz FA. Recordings of abnormal activity in patients with deafferentation and central pain. Stereotact Funct Neurosurg 1989;52:120–6. Ho RLM, Park J, Wang WE, Thomas JS, Cruz-Almeida Y, Coombes SA. Lower individual alpha frequency in individuals with chronic low back pain and fear of movement. PAIN 2024;165:1033–43. Hohn VD, Tiemann L, Bott FS, May ES, Fritzen C, Nickel MM, Gil Ávila C, Ploner M. Neurofeedback and attention modulate somatosensory alpha oscillations but not pain perception. PLoS Biol 2025;23:e3002972. Hu J, Harrold J, Squires JE, Modanloo S, Harrison D. The validity of skin conductance for assessing acute pain in mechanically ventilated infants: a cross-sectional observational study. Eur J Pain 2021;25:1994–2006. Inui K, Tran TD, Hoshiyama M, Kakigi R. Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. PAIN 2002;96:247–52. Jamal GA, Hansen S, Weir AI, Ballantyne JP. Cerebral cortical potentials to pure non-painful temperature stimulation: an objective technique for the assessment of small fibre pathway in man. J Neurol Neurosurg Psychiatry 1989;52:99–105. Jann K, Koenig T, Dierks T, Boesch C, Federspiel A. Association of individual resting state EEG alpha frequency and cerebral blood flow. Neuroimage 2010;51:365–72. Jeanmonod D, Magnin M, Morel A. Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 1993;4:475–8. Jeanmonod D, Magnin M, Morel A. Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 1996;119(Pt 2):363–75. Kakigi R, Shibasaki H, Tanaka K, Ikeda T, Oda K, Endo C, Ikeda A, Neshige R, Kuroda Y, Miyata K, Yi S, Ikegawa S, Araki S. CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between electrophysiological and histopathological findings. Muscle Nerve 1991;14:441–50. Kersebaum D, Sendel M, Lassen J, Fabig SC, Forstenpointner J, Reimer M, Canaan-Kühl S, Gaedeke J, Rehm S, Gierthmühlen J, Baron R, Hüllemann P. Cold-evoked potentials in Fabry disease and polyneuropathy. Front Pain Res 2024;5:1352711. Kim JA, Bosma RL, Hemington KS, Rogachov A, Osborne NR, Cheng JC, Oh J, Crawley AP, Dunkley BT, Davis KD, Davis KD. Neuropathic pain and pain interference are linked to alpha-band slowing and reduced beta-band magnetoencephalography activity within the dynamic pain connectome in patients with multiple sclerosis. PAIN 2019;160:187–97. Kim JA, Bosma RL, Hemington KS, Rogachov A, Osborne NR, Cheng JC, Oh J, Dunkley BT, Davis KD. Cross-network coupling of neural oscillations in the dynamic pain connectome reflects chronic neuropathic pain in multiple sclerosis. Neuroimage Clin 2020;26:102230. Kimura A, Mitsukura Y, Oya A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Objective characterization of hip pain levels during walking by combining quantitative electroencephalography with machine learning. Sci Rep 2021;11:3192. Kinjo S, Sands LP, Lim E, Paul S, Leung JM. Prediction of postoperative pain using path analysis in older patients. J Anesth 2012;26:1–8. Kisler LB, Kim JA, Hemington KS, Rogachov A, Cheng JC, Bosma RL, Osborne NR, Dunkley BT, Inman RD, Davis KD. Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component. Neuroimage Clin 2020;26:102241. Klimesch W, Schimke H, Pfurtscheller G. Alpha frequency, cognitive load and memory performance. Brain Topogr 1993;5:241–51. Klimesch W, Doppelmayr M, Schimke H, Pachinger T. Alpha frequency, reaction time, and the speed of processing information. J Clin Neurophysiol 1996;13:511–8. Krupina NA, Churyukanov MV, Kukushkin ML, Yakhno NN. Central neuropathic pain and profiles of quantitative electroencephalography in multiple sclerosis patients. Front Neurol 2019;10:1380. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci 2015;38:86–95. Labus JS, Naliboff B, Kilpatrick L, Liu C, Ashe-McNalley C, dos Santos IR, Alaverdyan M, Woodworth D, Gupta A, Ellingson BM, Tillisch K, Mayer EA. Pain and interoception Imaging Network (PAIN): a multimodal, multisite, brain-imaging repository for chronic somatic and visceral pain disorders. Neuroimage 2016;124:1232–7. Lehmann D, Ozaki H, Pal I. EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 1987;67:271–88. Lejeune N, Petrossova E, Frahm KS, Mouraux A. High-speed heating of the skin using a contact thermode elicits brain responses comparable to CO 2 laser-evoked potentials. Clin Neurophysiol 2023;146:1–9. Lendaro E, Balouji E, Baca K, Muhammad AS, Ortiz-Catalan M. Common spatial pattern EEG decomposition for phantom limb pain detection. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:726–9. Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, Larsson PG, Knight RT. An electrophysiological marker of arousal level in humans. Elife 2020;9:e55092. Lenz FA, Kwan HC, Dostrovsky JO, Tasker R. Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 1989;496:357–60. Leone C, Galosi E, Esposito N, Falco P, Fasolino A, Di Pietro G, Di Stefano G, Camerota F, Vollert J, Truini A. Small-fibre damage is associated with distinct sensory phenotypes in patients with fibromyalgia and small-fibre neuropathy. Eur J Pain 2023;27:163–73. Levitt J, Edhi MM, Thorpe RV, Leung JW, Michishita M, Koyama S, Yoshikawa S, Scarfo KA, Carayannopoulos AG, Gu W, Srivastava KH, Clark BA, Esteller R, Borton DA, Jones SR, Saab CY. Pain phenotypes classified by machine learning using electroencephalography features. Neuroimage 2020;223:117256. Li Y, Chen G, Lv J, Hou L, Dong Z, Wang R, Su M, Yu S. Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. J Headache Pain 2022;23:45. Li Y, Wang L, Han Q, Han Q, Jiang L, Wu Y, Feng Y. Preoperative resting-state microstate as a marker for chronic pain after breast cancer surgery. Brain Behav 2023;13:e3196. Liberati G. Neural biomarkers of pain: defining perspectives and limitations of peak alpha frequency. PAIN 2025. doi: 10.1097/j.pain.0000000000003572. (PMID: 10.1097/j.pain.0000000000003572) Lim M, Kim JS, Kim DJ, Chung CK. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients. Front Hum Neurosci 2016;10:111. Liu CC, Ohara S, Franaszczuk PJ, Lenz FA. Attention to painful cutaneous laser stimuli evokes directed functional connectivity between activity recorded directly from human pain-related cortical structures. PAIN 2011;152:664–75. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96:15222–7. Lopes TS, Santana JE, Silva WS, Fraga FJ, Montoya P, Sá KN, Lopes LC, Lucena R, Zana Y, Baptista AF. Increased delta and theta power density in sickle cell disease individuals with chronic pain secondary to hip osteonecrosis: a resting-state EEG study. Brain Topogr 2024;37:859–73. Lorenz J, Grasedyck K, Bromm B. Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroencephalogr Clin Neurophysiol 1996;100:165–8. Lütolf R, Rosner J, Curt A, Hubli M. Indicators of central sensitization in chronic neuropathic pain after spinal cord injury. Eur J Pain 2022;26:2162–75. Magnin M, Morel A, Jeanmonod D. Single unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 2000;96:549–64. Malver LP, Brokjaer A, Staahl C, Graversen C, Andresen T, Drewes AM. Electroencephalography and analgesics. Br J Clin Pharmacol 2014;77:72–95. Mandonnet V, Obaid S, Descoteaux M, St-Onge E, Devaux B, Levé C, Froelich S, Rheault F, Mandonnet E. Electrostimulation of the white matter of the posterior insula and medial operculum: perception of vibrations, heat, and pain. PAIN 2024;165:565–72. Mari T, Henderson J, Maden M, Nevitt S, Duarte R, Fallon N. Systematic review of the effectiveness of machine learning algorithms for classifying pain intensity, phenotype or treatment outcomes using electroencephalogram data. J Pain 2022;23:349–69. Masselin-Dubois A, Attal N, Fletcher D, Jayr C, Albi A, Fermanian J, Bouhassira D, Baudic S. Are psychological predictors of chronic postsurgical pain dependent on the surgical model? A comparison of total knee arthroplasty and breast surgery for cancer. J Pain 2013;14:854–64. May ES, Gil Ávila C, Ta Dinh S, Heitmann H, Hohn VD, Nickel MM, Tiemann L, Tölle TR, Ploner M. Dynamics of brain function in patients with chronic pain assessed by microstate analysis of resting-state electroencephalography. PAIN 2021;162:2894–908. May ES, Tiemann L, Gil Ávila C, Bott FS, Hohn VD, Gross J, Ploner M. Assessing the predictive value of peak alpha frequency for the sensitivity to pain. PAIN 2025. doi: 10.1097/j.pain.0000000000003571. (PMID: 10.1097/j.pain.0000000000003571) McGuigan S, Pelentritou A, Scott DA, Sleigh J. Xenon anaesthesia is associated with a reduction in frontal electroencephalogram peak alpha frequency. BJA Open 2024;12:100358. McLain NJ, Yani MS, Kutch JJ. Analytic consistency and neural correlates of peak alpha frequency in the study of pain. J Neurosci Methods 2022;368:109460. McLain N, Cavaleri R, Kutch J. Peak alpha frequency differs between chronic back pain and chronic widespread pain. Eur J Pain 2025;29:e4737. Michel CM, Brunet D. EEG source imaging: a practical review of the analysis steps. Front Neurol 2019;10:325. Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage 2018;180:577–93. Millard SK, Furman AJ, Kerr A, Seminowicz DA, Gao F, Naidu BV, Mazaheri A. Predicting postoperative pain in lung cancer patients using preoperative peak alpha frequency. Br J Anaesth 2022;128:e346–8. Millard SK, Speis DB, Skippen P, Chiang AKI, Chang WJ, Lin AJ, Furman AJ, Mazaheri A, Seminowicz DA, Schabrun SM. Can non-invasive brain stimulation modulate peak alpha frequency in the human brain? A systematic review and meta-analysis. Eur J Neurosci 2024;60:4182–200. Mouraux A, Ragé M, Bragard D, Plaghki L. Estimation of intraepidermal fiber density by the detection rate of nociceptive laser stimuli in normal and pathological conditions. Neurophysiol Clin 2012;42:281–91. Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022;258:119351. Ng S, Raveendran P. EEG peak alpha frequency as an indicator for physical fatigue. In: Jarm T, Kramar P, Zupanic A, editors. 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007. IFMBE Proceedings, Vol. 16. Berlin, Heidelberg; Springer, 2007. doi: 10.1007/978-3-540-73044-6_132. Nir RR, Sinai A, Raz E, Sprecher E, Yarnitsky D. Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain Res 2010;1344:77–86. Ohara S, Crone NE, Weiss N, Lenz FA. Analysis of synchrony demonstrates 'pain networks' defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. PAIN 2006;123:244–53. Osumi M, Sumitani M, Iwatsuki K, Hoshiyama M, Imai R, Morioka S, Hirata H. Resting-state electroencephalography microstates correlate with pain intensity in patients with complex regional pain syndrome. Clin EEG Neurosci 2024;55:121–9. Perchet C, Hagiwara K, Salameh C, Garcia-Larrea L. Cold-evoked potentials in clinical practice: a head-to-head contrast with laser-evoked responses. Eur J Pain 2023;27:1006–22. Ploner M, Schmitz F, Freund HJ, Schnitzler A. Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 2000;83:1770–6. Radhakrishnan V, Tsoukatos J, Davis KD, Tasker RR, Lozano AM, Dostrovsky JO. A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients. PAIN 1999;80:567–75. Raghuraman N, Wang Y, Schenk LA, Furman AJ, Tricou C, Seminowicz DA, Colloca L. Neural and behavioral changes driven by observationally-induced hypoalgesia. Sci Rep 2019;9:19760. Rios M, Treede R, Lee J, Lenz FA. Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 1999;3:256–64. Roué JM, Morag I, Haddad WM, Gholami B, Anand KJS. Using sensor-fusion and machine-learning algorithms to assess acute pain in non-verbal infants: a study protocol. BMJ Open 2021;11:e039292. Salameh C, Perchet C, Hagiwara K, Garcia-Larrea L. Sympathetic skin response as an objective tool to estimate stimulus-associated arousal in a human model of hyperalgesia. Neurophysiol Clin 2022;52:436–45. Sarnthein J, Morel A, von Stein A, Jeanmonod D. Thalamic theta field potentials and EEG: high thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders. Thalamus Relat Syst 2003;2:231–8. Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 2006;129:55–64. Sato G, Osumi M, Morioka S. Effects of wheelchair propulsion on neuropathic pain and resting electroencephalography after spinal cord injury. J Rehabil Med 2017;49:136–43. Sato G, Osumi M, Nobusako S, Morioka S. The effects of transcranial direct current stimulation combined with aerobic exercise on pain thresholds and electroencephalography in healthy adults. Pain Med 2021;22:2057–67. Scheuren PS, Rosner J, Curt A, Hubli M. Pain-autonomic interaction: a surrogate marker of central sensitization. Eur J Pain 2020;24:2015–26. Schmidt S, Naranjo JR, Brenneisen C, Gundlach J, Schultz C, Kaube H, Hinterberger T, Jeanmonod D. Pain ratings, psychological functioning and quantitative EEG in a controlled study of chronic back pain patients. PLoS One 2012;7:e31138. Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR. Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 2011;5:69. Steegen S, Tuerlinckx F, Gelman A, Vanpaemel W. Increasing transparency through a multiverse analysis. Perspect Psychol Sci 2016;11:702–12. Stern J, Jeanmonod D, Sarnthein J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 2006;31:721–31. Subramanian S, Lannon E, Mackey S. Data-Driven peak alpha identification reveals distinct EEG spatial signature phenotypes in chronic pain. Annu Int Conf IEEE Eng Med Biol Soc 2024;2024:1–4. Ta Dinh S, Nickel MM, Tiemann L, May ES, Heitmann H, Hohn VD, Edenharter G, Utpadel-Fischler D, Tölle TR, Sauseng P, Gross J, Ploner M. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. PAIN 2019;160:2751–65. Topaz LS, Frid A, Granovsky Y, Zubidat R, Crystal S, Buxbaum C, Bosak N, Hadad R, Domany E, Alon T, Meir Yalon L, Shor M, Khamaisi M, Hochberg I, Yarovinsky N, Volkovich Z, Bennett DL, Yarnitsky D. Electroencephalography functional connectivity—a biomarker for painful polyneuropathy. Eur J Neurol 2023;30:204–14. Truini A, Padua L, Biasiotta A, Caliandro P, Pazzaglia C, Galeotti F, Inghilleri M, Cruccu G. Differential involvement of A-delta and A-beta fibres in neuropathic pain related to carpal tunnel syndrome. PAIN 2009;145:105–9. Truini A, Biasiotta A, Cesa S, Stefano DG, Galeotti F, Petrucci MT, Inghilleri M, Cartoni C, Pergolini M, Cruccu G. Mechanisms of pain in distal symmetric polyneuropathy: a combined clinical and neurophysiological study. PAIN 2010;150:516–21. Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C, Leonetti F, Casato M, Pergolini M, Petrucci MT, Cruccu G. Peripheral nociceptor sensitization mediates allodynia in patients with distal symmetric polyneuropathy. J Neurol 2013;260:761–6. Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nat Rev Neurol 2013;9:572–82. Tsoukatos J, Kiss ZH, Davis KD, Tasker RR, Dostrovsky JO. Patterns of neuronal firing in the human lateral thalamus during sleep and wakefulness. Exp Brain Res 1997;113:273–82. Valentini E, Halder S, McInnerney D, Cooke J, Gyimes IL, Romei V. Assessing the specificity of the relationship between brain alpha oscillations and tonic pain. Neuroimage 2022;255:119143. Valentini E, Halder S, Romei V. The independence and predictivity of resting pain-free slow alpha frequency as a biomarker of pain: A reply to Mazaheri et al. Neuroimage 2024;296:120681. Valeriani M, de Tommaso M, Restuccia D, Le Pera D, Guido M, Iannetti GD, Libro G, Truini A, Di Trapani G, Puca F, Tonali P, Cruccu G. Reduced habituation to experimental pain in migraine patients: a CO(2) laser evoked potential study. PAIN 2003;105:57–64. Van Assche DCF, Plaghki L, Masquelier E, Hatem SM. Fibromyalgia syndrome. A laser-evoked potentials study unsupportive of small nerve fibre involvement. Eur J Pain 2020;24:448–56. van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D, van Lutterveld R, van Dijk BW, van Straaten EC, Hillebrand A, Stam CJ. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin Neurophysiol 2015;126:1468–81. Vanneste S, Ost J, Van Havenbergh T, De Ridder D. Resting state electrical brain activity and connectivity in fibromyalgia. PLoS One 2017;12:e0178516. Vanneste S, Song JJ, De Ridder D. Thalamocortical dysrhythmia detected by machine learning. Nat Commun 2018;9:1103. Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Nilsen KB, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: report from an IFCN expert group. Clin Neurophysiol 2022;136:13–38. Wei M, Liao Y, Liu J, Li L, Huang G, Huang J, Li D, Xiao L, Zhang Z. EEG beta-band spectral entropy can predict the effect of drug treatment on pain in patients with herpes zoster. J Clin Neurophysiol 2022;39:166–73. Zebhauser PT, Hohn VD, Ploner M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review. PAIN 2023;164:1200–21. Zebhauser PT, Bott F, Gil Ávila C, Heitmann H, May ES, Tiemann L, Baki E, Tölle TR, Ploner M. Effects of centrally acting analgesics on resting-state electroencephalography biomarker candidates of chronic pain. J Pain 2025;28:104788. Zhou Y, Gong L, Yang Y, Tan L, Ruan L, Chen X, Luo H, Ruan J. Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability. J Headache Pain 2023;24:13. |
| Contributed Indexing: | Keywords: Alpha peak frequency; CEP; CHEP; Chronic pain; EEG; Electroencephalography; Event-related; Evoked potentials; LEP; Laser; MEG; Magnetoencephalography; Neuropathic pain; PAF; Thalamocortical dysrhythmia |
| Entry Date(s): | Date Created: 20251014 Date Completed: 20251014 Latest Revision: 20251016 |
| Update Code: | 20251016 |
| DOI: | 10.1097/j.pain.0000000000003689 |
| PMID: | 41086331 |
| Databáze: | MEDLINE |
| Abstrakt: | Abstract: Considerable progress has been made over the past decade in the use, practicality, and clinical relevance of electroencephalography (EEG) and magnetoencephalography (MEG)-derived data, improving our understanding of cortical nociceptive processing, the transition from nociception to conscious pain, and its cognitive-emotional modulations. Multimodal responses to heat, cold, and tactile/electrical stimuli, combined with autonomic reactions, provide objective sensory tests that bypass the limitations of verbal responses, while emerging approaches to spontaneous EEG/MEG analysis are changing the game in the still elusive area of ongoing pain. We can expect that all departments involved in the assessment of chronic pain will gradually be able to access these powerful and flexible techniques.<br /> (Copyright © 2025 International Association for the Study of Pain.) |
|---|---|
| ISSN: | 1872-6623 |
| DOI: | 10.1097/j.pain.0000000000003689 |
Full Text Finder
Nájsť tento článok vo Web of Science