Recent Developments in Borrowing Hydrogen Methodology in N-alkylation of Amines.

Saved in:
Bibliographic Details
Title: Recent Developments in Borrowing Hydrogen Methodology in N-alkylation of Amines.
Authors: Yadav S; Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India., Pal D; Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India., Maurya SK; Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India. sushilncl@gmail.com.
Source: Topics in current chemistry (Cham) [Top Curr Chem (Cham)] 2025 Oct 09; Vol. 383 (4), pp. 46. Date of Electronic Publication: 2025 Oct 09.
Publication Type: Journal Article; Review
Language: English
Journal Info: Publisher: Springer Country of Publication: Switzerland NLM ID: 101691301 Publication Model: Electronic Cited Medium: Internet ISSN: 2364-8961 (Electronic) Linking ISSN: 23648961 NLM ISO Abbreviation: Top Curr Chem (Cham) Subsets: MEDLINE
Imprint Name(s): Original Publication: Cham : Springer, [2016]-
MeSH Terms: Amines*/chemistry , Amines*/chemical synthesis , Hydrogen*/chemistry, Alkylation ; Catalysis ; Molecular Structure
Abstract: In modern organic synthesis, the catalytic borrowing hydrogen methodology has emerged as a transformative strategy for the N-alkylation of amines with water as the only byproduct. Here, we have highlighted the recent developments over the period (approximately) from 2014 to 2024. We have discussed all the emerging catalytic systems, such as the use of non-metallic, homogeneous, heterogeneous, and electrocatalysts using noble and non-noble metals, with an emphasis on advancements that expand reaction scope, improve selectivity, and enhance selectivity. Ultimately, we aim to provide a comprehensive overview of catalytic N-alkylation processes, focusing on sustainable, efficient methodologies for a greener approach.
(© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Elfinger M, Bauer C, Schmauch J, Moritz M, Wichmann C, Papp C, Kempe R (2023) Adv Synth Catal 365:4654–4661. (PMID: 10.1002/adsc.202301179)
Mahato J, Das R, Saha TK (2024) Tetrahedron 165:134192. (PMID: 10.1016/j.tet.2024.134192)
Irrgang T, Kempe R (2019) Chem Rev 119:2524–2549. (PMID: 3045732010.1021/acs.chemrev.8b00306)
Upadhyay R, Rana R, Maurya SK (2021) ChemCatChem 13:1867–1897. (PMID: 10.1002/cctc.202001734)
Reed-Berendt BG, Latham DE, Dambatta MB, Morrill LC (2021) ACS Cent Sci 7:570–585. (PMID: 34056087815547810.1021/acscentsci.1c00125)
Ansari MF, Maurya AK, Kumar A, Elangovan S (2024) Beilstein J Org Chem 20:1111–1166. (PMID: 388875861118125810.3762/bjoc.20.98)
Alexandridis A, Quintard A (2024) ChemCatChem 16:e202400902. (PMID: 10.1002/cctc.202400902)
Subaramanian M, Sivakumar G, Balaraman E (2021) Org Biomol Chem 19:4213–4227. (PMID: 3388112110.1039/D1OB00080B)
Trowbridge A, Walton SM, Gaunt MJ (2020) Chem Rev 120:2613–2692. (PMID: 3206485810.1021/acs.chemrev.9b00462)
Reed-Berendt BG, Polidano K, Morrill LC (2019) Org Biomol Chem 17:1595–1607. (PMID: 3022217110.1039/C8OB01895B)
Huang H, Wei Y, Cheng Y, Xiao S, Chen M, Wei Z (2023) Catalysts 13:1350. (PMID: 10.3390/catal13101350)
Shimizu K-I (2015) Catal Sci Technol 5:1412–1427. (PMID: 10.1039/C4CY01170H)
Corma A, Navas J, Sabater MJ (2018) Chem Rev 118:1410–1459. (PMID: 2931929410.1021/acs.chemrev.7b00340)
Demir S, Coşkun F, Özdemir İ (2014) J Organomet Chem 755:134–140. (PMID: 10.1016/j.jorganchem.2014.01.007)
Şahin Z, Gürbüz N, Özdemir İ, Şahin O, Büyükgüngör O, Achard M, Bruneau C (2015) Organometallics 34:2296–2304. (PMID: 10.1021/om501066n)
Yiğit M, Karaca EÖ, Yiğit B, Gürbüz N, Özdemir İ (2019) Transition Met Chem 44:565–573. (PMID: 10.1007/s11243-019-00313-7)
Yiğit B, Karaca EÖzge, Yiğit M, Gürbüz N, Arslan H, Özdemir İ (2020) Polyhedron 175:114234. (PMID: 10.1016/j.poly.2019.114234)
Ramachandran R, Prakash G, Nirmala M, Viswanathamurthi P, Malecki JG (2015) J Organomet Chem 791:130–140. (PMID: 10.1016/j.jorganchem.2015.05.054)
Ramachandran R, Prakash G, Viswanathamurthi P, Malecki JG (2018) Inorg Chim Acta 477:122–129. (PMID: 10.1016/j.ica.2018.03.007)
Yu X, Li Y, Fu H, Zheng X, Chen H, Li R (2018) Appl Organomet Chem 32:e4277. (PMID: 10.1002/aoc.4277)
Alshakova ID, Nikonov GI (2019) ChemCatChem 11:5370–5378. (PMID: 10.1002/cctc.201900561)
Huang M, Li Y, Lan X-B, Liu J, Zhao C, Liu Y, Ke Z (2021) Org Biomol Chem 19:3451–3461. (PMID: 3389990010.1039/D1OB00362C)
Li C, Ge M-T, Bai L, Xia A-B, Xu D-Q, Xu Z-Y (2021) Org Biomol Chem 19:4478–4482. (PMID: 3395005410.1039/D1OB00368B)
Patel B, Ranjan R, Chauhan NR, Mukhopadhyay S, Choudhury AR, Vyas KM (2023) New J Chem 47:8305–8317. (PMID: 10.1039/D3NJ00210A)
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND (2023) J Org Chem 88:5944–5961. (PMID: 3705221710.1021/acs.joc.3c00313)
Vijayapritha S, Nithya P, Viswanathamurthi P, Raju S, Linert W (2023) Polyhedron 235:116351. (PMID: 10.1016/j.poly.2023.116351)
Gao C, Li Y, Wang M, Gong D, Zhao L (2023) ACS Omega 8:36597–36603. (PMID: 378106631055211010.1021/acsomega.3c06260)
Bai M, Zhang S, Lin Z, Hao Z, Han Z, Lu G-L, Lin J (2024) Inorg Chem 63:11821–11831. (PMID: 3884831010.1021/acs.inorgchem.4c01561)
Cai X, Zhou X, Huang M (2024) Org Chem Front 11:113–119. (PMID: 10.1039/D3QO01097J)
Shan SP, Dang TT, Seayad AM, Ramalingam B (2014) ChemCatChem 6:808–814. (PMID: 10.1002/cctc.201300971)
Risi C, Calamante M, Cini E, Faltoni V, Petricci E, Rosati F, Taddei M (2020) Green Chem 22:327–331. (PMID: 10.1039/C9GC03351C)
Appiagyei B, Bhatia S, Keeney GL, Dolmetsch T, Jackson JE (2020) Green Chem 22:860–869. (PMID: 10.1039/C9GC03747K)
Mamidala R, Mukundam V, Dhanunjayarao K, Venkatasubbaiah K (2017) Tetrahedron 73:2225–2233. (PMID: 10.1016/j.tet.2017.03.001)
Wang B, Deng Z, Fu X, Xu C, Li Z (2018) Appl Catal, B 237:970–975. (PMID: 10.1016/j.apcatb.2018.06.067)
Dang TT, Shan SP, Ramalingam B, Seayad AM (2015) RSC Adv 5:42399–42406. (PMID: 10.1039/C5RA07225E)
Alshammari AS, Natte K, Kalevaru NV, Bagabas A, Jagadeesh RV (2020) J Catal 382:141–149. (PMID: 10.1016/j.jcat.2019.12.012)
Liu P, Liang R, Lu L, Yu Z, Li F (2017) J Org Chem 82:1943–1950. (PMID: 2805448210.1021/acs.joc.6b02758)
Fujita K, Furukawa S, Morishima N, Shimizu M, Yamaguchi R (2018) ChemCatChem 10:1993–1997. (PMID: 10.1002/cctc.201702037)
Li C, Wan K-F, Guo F-Y, Wu Q-H, Yuan M-L, Li R-X, Fu H-Y, Zheng X-L, Chen H (2019) J Org Chem 84:2158–2168. (PMID: 3067602910.1021/acs.joc.8b03137)
Luo N, Zhong Y, Wen H, Luo R (2020) ACS Omega 5:27723–27732. (PMID: 33134736759432510.1021/acsomega.0c04192)
Denizaltı S, Dayan S, Günnaz S, Şahin E (2020) Appl Organomet Chem 34:e5970. (PMID: 10.1002/aoc.5970)
Guérin V, Legault CY (2021) Organometallics 40:408–417. (PMID: 10.1021/acs.organomet.0c00726)
Feng X, Huang M (2021) Polyhedron 205:115289. (PMID: 10.1016/j.poly.2021.115289)
Luo N, Zhong Y, Shui H, Luo R (2021) J Org Chem 86:15509–15521. (PMID: 3464407510.1021/acs.joc.1c01930)
Borthakur I, Maji M, Joshi A, Kundu S (2022) J Org Chem 87:628–643. (PMID: 3489820010.1021/acs.joc.1c02625)
Chen Y-S, Chiu S-Y, Li C-Y, Chen T-R, Chen J-D (2023) RSC Adv 13:31948–31961. (PMID: 379154451061737110.1039/D3RA07184G)
Dong B, Wu X, Shen L, He Y, Chen X, Zhang S, Li F (2024) Inorg Chem 63:15072–15080. (PMID: 3906670610.1021/acs.inorgchem.4c02053)
Wu Y, Xi S, Chen C, Hu Q, Xiong Z, Wang J, Dai Y, Han Y, Jiang S, Wang J, Zhou Y (2023) Sci China: Chem 66:2690–2699. (PMID: 10.1007/s11426-023-1719-y)
Lv Z, Hong Z, Qian C, Zhou S (2023) Catal Sci Technol 13:5058–5070. (PMID: 10.1039/D3CY00980G)
Dubey P, Gupta S, Singh AK (2019) Organometallics 38:944–961. (PMID: 10.1021/acs.organomet.8b00908)
Yan T, Feringa BL, Barta K (2014) Nat Commun 5:5602. (PMID: 2542488510.1038/ncomms6602)
Chen H, Wang Q, Liu T, Chen H, Zhou D, Qu F (2021) J Coord Chem 74:877–884. (PMID: 10.1080/00958972.2021.1881066)
Wu P, Lu G, Cai C (2021) Green Chem 23:396–404. (PMID: 10.1039/D0GC03725G)
Rösler S, Ertl M, Irrgang T, Kempe R (2015) Angew Chem Int Ed 54:15046–15050. (PMID: 10.1002/anie.201507955)
Prabha D, Pachisia S, Gupta R (2021) Inorg Chem Front 8:1599–1609. (PMID: 10.1039/D0QI01374A)
Mondal S, Pal S, Khanra S, Chakraborty S, Paul ND (2023) Eur J Inorg Chem 26:e202300263. (PMID: 10.1002/ejic.202300263)
Emayavaramban B, Chakraborty P, Manoury E, Poli R, Sundararaju B (2019) Org Chem Front 6:852–857. (PMID: 10.1039/C8QO01389F)
Panigrahi UK, Bhat VT, Ramakrishnan VKM (2021) ChemSelect 6:8766–8773.
Ma Z, Zhou B, Li X, Kadam RG, Gawande MB, Petr M, Zbořil R, Beller M, Jagadeesh RV (2022) Chem Sci 13:111–117. (PMID: 10.1039/D1SC05913K)
Subaramanian M, Midya SP, Ramar PM, Balaraman E (2019) Org Lett 21:8899–8903. (PMID: 3169155510.1021/acs.orglett.9b02990)
Balamurugan G, Ramesh R, Malecki JG (2020) J Org Chem 85:7125–7135. (PMID: 3238082610.1021/acs.joc.0c00530)
Nasresfahani Z, Kassaee MZ (2021) Appl Organomet Chem 35:e6032. (PMID: 10.1002/aoc.6032)
Wang L, Jv X, Wang R, Ma L, Liu J, Sun J, Shi T, Zhao L, Zhang X, Wang B (2022) ACS Sustainable Chem Eng 10:8342–8349. (PMID: 10.1021/acssuschemeng.2c01092)
Homberg L, Roller A, Hultzsch KC (2019) Org Lett 21:3142–3147. (PMID: 3098607310.1021/acs.orglett.9b00832)
Wei D, Yang P, Yu C, Zhao F, Wang Y, Peng Z (2021) J Org Chem 86:2254–2263. (PMID: 3349459510.1021/acs.joc.0c02407)
Kallmeier F, Fertig R, Irrgang T, Kempe R (2020) Angew Chem Int Ed 59:11789–11793. (PMID: 10.1002/anie.202001704)
Ranjan R, Chakraborty A, Kyarikwal R, Ganguly R, Mukhopadhyay S (2022) Dalton Trans 51:13288–13300. (PMID: 3598372410.1039/D2DT01771G)
Santoro F, Psaro R, Ravasio N, Zaccheria F (2014) RSC Adv 4:2596–2600. (PMID: 10.1039/C3RA44364G)
Chakraborty S, Mondal R, Pal S, Guin AK, Roy L, Paul ND (2023) J Org Chem 88:771–787. (PMID: 3657702310.1021/acs.joc.2c01773)
Sankar V, Kathiresan M, Sivakumar B, Mannathan S (2020) Adv Synth Catal 362:4409–4414. (PMID: 10.1002/adsc.202000499)
Zhang X, Zhang Q, Reng J, Lin Y, Tang Y, Liu G, Wang P, Lu G-P (2023) Nanomaterials 13:445. (PMID: 36770405991969010.3390/nano13030445)
Upadhyay R, Maurya SK (2023) J Org Chem 88:16960–16966. (PMID: 3804848210.1021/acs.joc.3c01788)
Patel NB, Vala N, Shukla A, Neogi S, Mishra MK (2020) Catal Commun 144:106085. (PMID: 10.1016/j.catcom.2020.106085)
Krishnan K, Samaraj E, Sanjeev G, Bhat VT, Manickam S, Parasuraman S, Thanikachalam PM (2023) ChemistrySelect 8:e202300770. (PMID: 10.1002/slct.202300770)
Rojas-Buzo S, Concepción P, Corma A, Moliner M, Boronat M (2021) ACS Catal 11:8049–8061. (PMID: 10.1021/acscatal.1c01739)
Bohigues B, Rojas-Buzo S, Moliner M, Corma A (2021) ACS Sustain Chem Eng 9:15793–15806. (PMID: 35663357915305810.1021/acssuschemeng.1c04903)
Peñafiel I, Dryfe RAW, Turner NJ, Greaney MF (2021) ChemCatChem 13:864–867. (PMID: 10.1002/cctc.202001757)
Sharma R, Rahaman AAT, Sen J, Mashevskaya IV, Chaudhary S (2023) Org Chem Front 10:730–744.
Garg NK, Tan M, Johnson MT, Wendt OF (2023) ChemCatChem 15:e202300741. (PMID: 10.1002/cctc.202300741)
Contributed Indexing: Keywords: N-alkylation of amines; Borrowing hydrogen methodology; Heterogeneous catalysis; Homogeneous catalysis
Substance Nomenclature: 0 (Amines)
7YNJ3PO35Z (Hydrogen)
Entry Date(s): Date Created: 20251009 Date Completed: 20251009 Latest Revision: 20251204
Update Code: 20251205
DOI: 10.1007/s41061-025-00523-x
PMID: 41066029
Database: MEDLINE
Description
Abstract:In modern organic synthesis, the catalytic borrowing hydrogen methodology has emerged as a transformative strategy for the N-alkylation of amines with water as the only byproduct. Here, we have highlighted the recent developments over the period (approximately) from 2014 to 2024. We have discussed all the emerging catalytic systems, such as the use of non-metallic, homogeneous, heterogeneous, and electrocatalysts using noble and non-noble metals, with an emphasis on advancements that expand reaction scope, improve selectivity, and enhance selectivity. Ultimately, we aim to provide a comprehensive overview of catalytic N-alkylation processes, focusing on sustainable, efficient methodologies for a greener approach.<br /> (© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
ISSN:2364-8961
DOI:10.1007/s41061-025-00523-x