Experimental warming alters free-living nitrogen fixation in a humid tropical forest.
Saved in:
| Title: | Experimental warming alters free-living nitrogen fixation in a humid tropical forest. |
|---|---|
| Authors: | Bartz PM; Department of Biology, Oklahoma State University, Stillwater, OK, 74078, USA., Grullón-Penkova IF; International Institute of Tropical Forestry, USDA Forest Service, Rio Piedras, Puerto Rico, 00926, USA., Cavaleri MA; College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA., Reed SC; Southwest Biological Science Center, US Geological Survey, Moab, UT, 84532, USA., Shahid S; Department of Biology, Oklahoma State University, Stillwater, OK, 74078, USA.; Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK., Wood TE; International Institute of Tropical Forestry, USDA Forest Service, Rio Piedras, Puerto Rico, 00926, USA., Bachelot B; Department of Biology, Oklahoma State University, Stillwater, OK, 74078, USA. |
| Source: | The New phytologist [New Phytol] 2025 Dec; Vol. 248 (6), pp. 2750-2763. Date of Electronic Publication: 2025 Oct 08. |
| Publication Type: | Journal Article |
| Language: | English |
| Journal Info: | Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE |
| Imprint Name(s): | Publication: Oxford : Wiley on behalf of New Phytologist Trust Original Publication: London, New York [etc.] Academic Press. |
| MeSH Terms: | Nitrogen Fixation* , Tropical Climate* , Forests* , Humidity* , Global Warming* , Temperature*, Plant Leaves/microbiology ; Soil Microbiology ; Soil/chemistry ; Bacteria/metabolism ; Nitrogen/metabolism ; Puerto Rico |
| Abstract: | Microbial nitrogen (N) fixation accounts for c. 97% of natural N inputs to terrestrial ecosystems. These microbes can be free-living in the soil and leaf litter (asymbiotic) or in symbiosis with plants. Warming is expected to increase N-fixation rates because warmer temperatures favor the growth and activity of N-fixing microbes. We investigated the effects of warming on asymbiotic components of N fixation at a field warming experiment in Puerto Rico. We analyzed the function and composition of bacterial communities from surface soil and leaf litter samples. Warming significantly increased asymbiotic N-fixation rates in soil by 55% (to 0.002 kg ha -1 yr -1 ) and by 525% in leaf litter (to 14.518 kg ha -1 yr -1 ). This increase in N fixation was associated with changes in the N-fixing bacterial community composition and soil nutrients. Our findings suggest that warming increases the natural N inputs from the atmosphere into this tropical forest due to changes in microbial function and composition, especially in the leaf litter. Given the importance of leaf litter in nutrient cycling, future research should investigate other aspects of N cycles in the leaf litter under warming conditions. (© 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.) |
| References: | Nat Commun. 2024 Oct 24;15(1):9185. (PMID: 39448578) Sci Total Environ. 2021 Jun 15;773:145066. (PMID: 33582326) Database (Oxford). 2014 Feb 05;2014:bau001. (PMID: 24501396) Glob Chang Biol. 2017 Jan;23(1):455-464. (PMID: 27234363) Oecologia. 2010 Oct;164(2):521-31. (PMID: 20454976) Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22. (PMID: 20534432) Ecology. 2008 Feb;89(2):371-9. (PMID: 18409427) Nature. 2013 Oct 10;502(7470):224-7. (PMID: 24037375) Plant Physiol. 1968 Aug;43(8):1185-207. (PMID: 16656902) Front Microbiol. 2016 Jul 05;7:1045. (PMID: 27468277) Nat Plants. 2022 Mar;8(3):209-216. (PMID: 35115725) Appl Environ Microbiol. 2013 Sep;79(17):5112-20. (PMID: 23793624) mBio. 2019 Feb 26;10(1):. (PMID: 30808694) New Phytol. 2018 Feb;217(3):1050-1061. (PMID: 29165820) Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13479-84. (PMID: 20624973) mBio. 2013 May 28;4(3):e00569-12. (PMID: 23716574) Appl Environ Microbiol. 2009 Dec;75(23):7537-41. (PMID: 19801464) Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8817-8822. (PMID: 28760948) Sci Total Environ. 2024 Jan 1;906:167255. (PMID: 37741390) Appl Environ Microbiol. 2014 May;80(10):3103-12. (PMID: 24610855) Microb Ecol. 2021 Feb;81(2):425-436. (PMID: 32901387) Front Microbiol. 2023 Nov 18;14:1295854. (PMID: 38075887) Environ Pollut. 2022 Dec 1;314:120272. (PMID: 36167167) J Bacteriol. 2011 May;193(10):2668-9. (PMID: 21441518) PLoS One. 2012;7(3):e33710. (PMID: 22470462) Glob Chang Biol. 2020 Nov;26(11):6203-6217. (PMID: 32869422) Nat Rev Microbiol. 2020 Jan;18(1):35-46. (PMID: 31586158) Front Microbiol. 2017 May 31;8:1007. (PMID: 28620371) Glob Chang Biol. 2019 Sep;25(9):3018-3030. (PMID: 31120621) PLoS One. 2019 Jun 18;14(6):e0211310. (PMID: 31211785) Ecol Evol. 2018 Jan 15;8(4):1932-1944. (PMID: 29468013) Nature. 2013 Oct 10;502(7470):183-7. (PMID: 24108050) Glob Chang Biol. 2021 Feb;27(3):664-674. (PMID: 33140554) IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. (PMID: 22499653) Front Microbiol. 2018 Apr 30;9:703. (PMID: 29760683) Glob Chang Biol. 2020 Jun;26(6):3417-3428. (PMID: 32196863) Appl Environ Microbiol. 2014 Jan;80(1):281-8. (PMID: 24162570) Plant Soil. 2020;450(1):93-110. (PMID: 32624623) Sci Total Environ. 2020 Dec 1;746:140998. (PMID: 32763600) Appl Environ Microbiol. 2010 Feb;76(4):999-1007. (PMID: 20023089) Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4927-32. (PMID: 12684534) Glob Chang Biol. 2023 Apr;29(7):1905-1921. (PMID: 36660889) New Phytol. 2013 Jul;199(2):441-451. (PMID: 23550663) Biol Rev Camb Philos Soc. 2012 Nov;87(4):912-27. (PMID: 22607308) Sci Total Environ. 2021 Feb 1;754:142202. (PMID: 33254844) Ecol Evol. 2025 May 14;15(5):e71425. (PMID: 40370343) Ecology. 2009 Jan;90(1):109-21. (PMID: 19294918) Nat Plants. 2015 Jun 01;1:15064. (PMID: 27250004) Am Nat. 2018 Nov;192(5):618-629. (PMID: 30332582) Nature. 2008 Jul 17;454(7202):327-30. (PMID: 18563086) Microbiome. 2017 Jul 19;5(1):82. (PMID: 28724401) Trends Microbiol. 2024 Jun;32(6):546-553. (PMID: 38262802) Front Microbiol. 2015 Jul 21;6:746. (PMID: 26284038) |
| Grant Information: | 1754713 Division of Environmental Biology; 2120085 Division of Environmental Biology; 89243018S-SC-000014 Basic Energy Sciences; 89243018S-SC-000017 Basic Energy Sciences; 89243021S-SC-000076 Basic Energy Sciences; DE-SC-0011806 Basic Energy Sciences; DE-SC-0018942 Basic Energy Sciences; DE-SC0012000 Basic Energy Sciences; DE-SC0022095 Basic Energy Sciences |
| Contributed Indexing: | Keywords: climate warming; global change; hurricane; microbial ecology; microbiome; nitrogen fixation; tropical ecology; tropical forest |
| Substance Nomenclature: | 0 (Soil) N762921K75 (Nitrogen) |
| Entry Date(s): | Date Created: 20251009 Date Completed: 20251120 Latest Revision: 20251122 |
| Update Code: | 20251122 |
| PubMed Central ID: | PMC12630463 |
| DOI: | 10.1111/nph.70592 |
| PMID: | 41063423 |
| Database: | MEDLINE |
| Abstract: | Microbial nitrogen (N) fixation accounts for c. 97% of natural N inputs to terrestrial ecosystems. These microbes can be free-living in the soil and leaf litter (asymbiotic) or in symbiosis with plants. Warming is expected to increase N-fixation rates because warmer temperatures favor the growth and activity of N-fixing microbes. We investigated the effects of warming on asymbiotic components of N fixation at a field warming experiment in Puerto Rico. We analyzed the function and composition of bacterial communities from surface soil and leaf litter samples. Warming significantly increased asymbiotic N-fixation rates in soil by 55% (to 0.002 kg ha <sup>-1</sup> yr <sup>-1</sup> ) and by 525% in leaf litter (to 14.518 kg ha <sup>-1</sup> yr <sup>-1</sup> ). This increase in N fixation was associated with changes in the N-fixing bacterial community composition and soil nutrients. Our findings suggest that warming increases the natural N inputs from the atmosphere into this tropical forest due to changes in microbial function and composition, especially in the leaf litter. Given the importance of leaf litter in nutrient cycling, future research should investigate other aspects of N cycles in the leaf litter under warming conditions.<br /> (© 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.) |
|---|---|
| ISSN: | 1469-8137 |
| DOI: | 10.1111/nph.70592 |
Full Text Finder
Nájsť tento článok vo Web of Science