Streamline automated biomedical discoveries with agentic bioinformatics.
Saved in:
| Title: | Streamline automated biomedical discoveries with agentic bioinformatics. |
|---|---|
| Authors: | Zhou J; Syneron Opal, 10281, Cayman Island.; Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; Center of Excellence for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China., Jiang J; Department of Statistics, Nanjing University, Nanjing 210008, China., Han Z; Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; Center of Excellence for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; School of Software, Shandong University, Jinan 250101, China., Wang Z; School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China., Gao X; Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; Center of Excellence for Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. |
| Source: | Briefings in bioinformatics [Brief Bioinform] 2025 Aug 31; Vol. 26 (5). |
| Publication Type: | Journal Article; Review |
| Language: | English |
| Journal Info: | Publisher: Oxford University Press Country of Publication: England NLM ID: 100912837 Publication Model: Print Cited Medium: Internet ISSN: 1477-4054 (Electronic) Linking ISSN: 14675463 NLM ISO Abbreviation: Brief Bioinform Subsets: MEDLINE |
| Imprint Name(s): | Publication: Oxford : Oxford University Press Original Publication: London ; Birmingham, AL : H. Stewart Publications, [2000- |
| MeSH Terms: | Computational Biology*/methods , Artificial Intelligence* , Biomedical Research*, Humans ; Precision Medicine ; Drug Discovery ; Synthetic Biology |
| Abstract: | The emergence of artificial intelligence agents powered by large language models marks a transformative shift in computational biology. In this new paradigm, autonomous, adaptive, and intelligent agents are deployed to tackle complex biological challenges, leading to a new research field named agentic bioinformatics. Here, we explore the core principles, evolving methodologies, and diverse applications of agentic bioinformatics. We examine how agentic bioinformatics systems work synergistically to facilitate data-driven decision-making and enable self-directed exploration of biological datasets. Furthermore, we highlight the integration of agentic frameworks in key areas such as personalized medicine, drug discovery, and synthetic biology, illustrating their potential to revolutionize healthcare and biotechnology. In addition, we address the ethical, technical, and scalability challenges associated with agentic bioinformatics, identifying key opportunities for future advancements. By emphasizing the importance of interdisciplinary collaboration and innovation, we envision agentic bioinformatics as a major force in overcoming the grand challenges of modern biology, ultimately advancing both research and clinical applications. (© The Author(s) 2025. Published by Oxford University Press.) |
| References: | Nature. 2025 Jul 29;:. (PMID: 40730228) Sci Rep. 2022 Feb 3;12(1):1878. (PMID: 35115584) Brief Bioinform. 2017 Sep 1;18(5):851-869. (PMID: 27473064) Patterns (N Y). 2024 Mar 01;5(3):100943. (PMID: 38487804) Digit Discov. 2024 May 17;3(7):1389-1409. (PMID: 38993729) Bioinform Adv. 2023 Jan 11;3(1):vbad001. (PMID: 36845200) Brief Bioinform. 2007 Jan;8(1):45-59. (PMID: 16772270) Comput Biol Med. 2023 Feb;153:106544. (PMID: 36652866) Nat Rev Bioeng. 2024 Feb;2(2):136-154. (PMID: 38576453) Nature. 2015 May 28;521(7553):436-44. (PMID: 26017442) Biomol Eng. 2001 Nov;18(5):241-8. (PMID: 11911091) Adv Sci (Weinh). 2024 Nov;11(44):e2407094. (PMID: 39361263) Nat Methods. 2021 Oct;18(10):1161-1168. (PMID: 34556866) Bioinformatics. 2025 May 6;41(5):. (PMID: 40323323) Nucleic Acids Res. 2002 Jan 1;30(1):38-41. (PMID: 11752248) Genomics Proteomics Bioinformatics. 2024 May 9;22(1):. (PMID: 38862428) Bioinformatics. 2012 Oct 1;28(19):2520-2. (PMID: 22908215) Bioinformatics. 2003 Nov 22;19(17):2176-90. (PMID: 14630646) Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2406320121. (PMID: 38630717) Nature. 2017 Oct 19;550(7676):345-353. (PMID: 29019985) Bioinformatics. 2004 Nov 22;20(17):3045-54. (PMID: 15201187) Comput Biol Med. 2024 May;174:108408. (PMID: 38636332) Nat Biotechnol. 2018 Jul;36(6):547-551. (PMID: 29734293) Nat Rev Genet. 2019 Sep;20(9):520-535. (PMID: 31235872) Nat Mach Intell. 2022 Mar;4(3):189-191. (PMID: 36211133) Trends Biochem Sci. 1998 Oct;23(10):403-5. (PMID: 9810230) Cell. 2024 Oct 31;187(22):6125-6151. (PMID: 39486399) Nucleic Acids Res. 2022 Oct 28;50(19):10869-10881. (PMID: 36243974) Brief Bioinform. 2019 Nov 27;20(6):1981-1996. (PMID: 30084940) Brief Bioinform. 2018 Mar 1;19(2):325-340. (PMID: 28011753) Brief Bioinform. 2025 Jul 2;26(4):. (PMID: 40639418) Proteomics. 2023 Dec;23(23-24):e2300011. (PMID: 37381841) Comput Methods Programs Biomed. 2023 Oct;240:107681. (PMID: 37385142) |
| Grant Information: | REI/1/5234-01-01 King Abdullah University of Science and Technology (KAUST) Office of Research Administration (ORA); REI/1/5414-01-01 King Abdullah University of Science and Technology (KAUST) Office of Research Administration (ORA); REI/1/5289-01-01 King Abdullah University of Science and Technology (KAUST) Office of Research Administration (ORA); REI/1/5404-01-01 King Abdullah University of Science and Technology (KAUST) Office of Research Administration (ORA); REI/1/5992-01-01 King Abdullah University of Science and Technology (KAUST) Office of Research Administration (ORA); URF/1/4663-01-01 King Abdullah University of Science and Technology (KAUST) Office of Research Administration (ORA); 5932 Center of Excellence for Smart Health; 5940 Center of Excellence on Generative AI; UDF01004172 Chinese University of Hong Kong, Shenzhen |
| Contributed Indexing: | Keywords: AI agents; bioinformatics; large language models |
| Entry Date(s): | Date Created: 20250928 Date Completed: 20250928 Latest Revision: 20251001 |
| Update Code: | 20251001 |
| PubMed Central ID: | PMC12476841 |
| DOI: | 10.1093/bib/bbaf505 |
| PMID: | 41016012 |
| Database: | MEDLINE |
| Abstract: | The emergence of artificial intelligence agents powered by large language models marks a transformative shift in computational biology. In this new paradigm, autonomous, adaptive, and intelligent agents are deployed to tackle complex biological challenges, leading to a new research field named agentic bioinformatics. Here, we explore the core principles, evolving methodologies, and diverse applications of agentic bioinformatics. We examine how agentic bioinformatics systems work synergistically to facilitate data-driven decision-making and enable self-directed exploration of biological datasets. Furthermore, we highlight the integration of agentic frameworks in key areas such as personalized medicine, drug discovery, and synthetic biology, illustrating their potential to revolutionize healthcare and biotechnology. In addition, we address the ethical, technical, and scalability challenges associated with agentic bioinformatics, identifying key opportunities for future advancements. By emphasizing the importance of interdisciplinary collaboration and innovation, we envision agentic bioinformatics as a major force in overcoming the grand challenges of modern biology, ultimately advancing both research and clinical applications.<br /> (© The Author(s) 2025. Published by Oxford University Press.) |
|---|---|
| ISSN: | 1477-4054 |
| DOI: | 10.1093/bib/bbaf505 |
Full Text Finder
Nájsť tento článok vo Web of Science