Wnt inhibition alleviates resistance to anti-PD1 therapy and improves antitumor immunity in glioblastoma.

Gespeichert in:
Bibliographische Detailangaben
Titel: Wnt inhibition alleviates resistance to anti-PD1 therapy and improves antitumor immunity in glioblastoma.
Autoren: Krishnan S; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Lee S; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Amoozgar Z; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Subudhi S; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Srinivasan Kumar A; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139., Posada JM; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115., Lindeman N; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115., Lei P; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Duquette M; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Steinbuch S; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.; Department of Dermatology, University Medical Center Bonn, Bonn 53127, Germany., Charabati M; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Huang P; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Andersson P; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Datta M; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Munn LL; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Fukumura D; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114., Jain RK; Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.
Quelle: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2025 Sep 23; Vol. 122 (38), pp. e2414941122. Date of Electronic Publication: 2025 Sep 15.
Publikationsart: Journal Article
Sprache: English
Info zur Zeitschrift: Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
Imprint Name(s): Original Publication: Washington, DC : National Academy of Sciences
MeSH-Schlagworte: Glioblastoma*/immunology , Glioblastoma*/drug therapy , Glioblastoma*/pathology , Glioblastoma*/metabolism , Glioblastoma*/genetics , Drug Resistance, Neoplasm*/drug effects , Programmed Cell Death 1 Receptor*/antagonists & inhibitors , Immune Checkpoint Inhibitors*/pharmacology , Immune Checkpoint Inhibitors*/therapeutic use , Brain Neoplasms*/immunology , Brain Neoplasms*/drug therapy , Wnt Proteins*/antagonists & inhibitors , Wnt Proteins*/metabolism , Wnt Proteins*/genetics, Animals ; Mice ; Humans ; Wnt Signaling Pathway/drug effects ; Tumor Microenvironment/drug effects ; Tumor Microenvironment/immunology ; Cell Line, Tumor ; beta Catenin/metabolism ; Female ; Pyridines ; Benzeneacetamides
Abstract: Competing Interests: Competing interests statement:R.K.J. received consultant fees from SynDevRx; owns equity in Accurius, Enlight, and SynDevRx; served on the Board of Trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund, and Tekla World Healthcare Fund; and received research grants Sanofi. L.L.M. receives equity from Bayer and is a consultant for SimBiosys. No funding or reagents from these organizations were used in this study. S.K. is a current employee of and a holder of stock options with Agenus Inc. Other co-authors have no conflict of interest to declare.
Wnt signaling plays a crucial role for many developmental processes. It is also pivotal in the generation and limited treatment outcomes of glioblastoma (GBM). Here, we identified Wnt7b, which is markedly upregulated in GBM patients, as a determinant of resistance to immune checkpoint blockers (αPD1; anti-Programmed Cell Death Protein 1) in a clinically relevant, αPD1-resistant GBM murine model with abundant stem cells. We observed that increased levels of Wnt7b and β-catenin correlated with the resistance to αPD1. Treatment combining a porcupine inhibitor WNT974 with αPD1 reprogrammed the immune suppressive tumor microenvironment (TME) to bolster antitumor immune responses and extended the survival of mice bearing orthotopic GBM, with 25% long-term survivors. Our causal studies revealed that WNT974 potentiated αPD1 therapy by the expansion of antigen presenting DC3-like dendritic cells (DCs). Additionally, WNT974 combination with αPD1 was associated with a reduction in immune suppressive granulocytic myeloid-derived suppressor cells (MDSCs), an increase in the Ki67+CD8/Ki67+regulatory T cells (Treg) ratio, tilting the CD8:Treg balance in the TME toward antitumor immune response, and more pronounced GrzB+CD8+ effector T cells. Conversely, an increase in monocytic MDSCs and phosphorylation of pro-oncogenic proteins was associated with resistance to the combination therapy. Collectively, our preclinical findings provide a strong rationale to test Wnt7b/β-catenin inhibition with αPD1 therapy in GBM patients with elevated Wnt7b/β-catenin signaling.
Kommentare: Comment in: Proc Natl Acad Sci U S A. 2025 Nov 4;122(44):e2523639122. doi: 10.1073/pnas.2523639122.. (PMID: 41144679)
References: PLoS Genet. 2013;9(8):e1003603. (PMID: 23966864)
Nature. 2019 Feb;566(7745):553-557. (PMID: 30728496)
Nature. 2020 Apr;580(7802):257-262. (PMID: 32269339)
Nat Biotechnol. 2019 Jul;37(7):773-782. (PMID: 31061481)
Exp Mol Med. 2020 Feb;52(2):183-191. (PMID: 32037398)
Nat Commun. 2020 Jul 8;11(1):3406. (PMID: 32641768)
Cell. 2021 Aug 19;184(17):4512-4530.e22. (PMID: 34343496)
Nat Commun. 2021 Nov 26;12(1):6938. (PMID: 34836966)
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4476-81. (PMID: 27044098)
Trends Immunol. 2016 Nov;37(11):778-789. (PMID: 27614799)
Mol Cell Neurosci. 2013 May;54:44-57. (PMID: 23337036)
Toxicol Lett. 2019 Mar 1;302:60-74. (PMID: 30447258)
Clin Cancer Res. 2017 Sep 1;23(17):5187-5201. (PMID: 28698201)
Nat Commun. 2021 May 11;12(1):2582. (PMID: 33976133)
Nat Immunol. 2019 Sep;20(9):1100-1109. (PMID: 31358997)
J Biol Chem. 2008 Jan 25;283(4):1778-85. (PMID: 18042545)
J Immunol. 2000 Jul 15;165(2):779-85. (PMID: 10878351)
J Clin Invest. 2021 Jul 15;131(14):. (PMID: 34138753)
Immunity. 2019 Jan 15;50(1):253-271.e6. (PMID: 30471926)
Nature. 2022 Jul;607(7920):816-822. (PMID: 35831507)
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1129-1138. (PMID: 31879345)
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45):. (PMID: 34725151)
J Exp Med. 2020 Nov 2;217(11):. (PMID: 32860047)
JAMA Oncol. 2020 Jul 1;6(7):1003-1010. (PMID: 32437507)
Neuro Oncol. 2024 Feb 2;26(2):211-225. (PMID: 37995317)
Nature. 2009 Oct 1;461(7264):614-20. (PMID: 19759537)
Cancer Cell. 2017 Jul 10;32(1):42-56.e6. (PMID: 28697342)
Cell Rep. 2013 May 30;3(5):1567-79. (PMID: 23707066)
Nat Rev Immunol. 2009 Mar;9(3):162-74. (PMID: 19197294)
NPJ Precis Oncol. 2018 Feb 20;2(1):5. (PMID: 29872723)
Cell. 2022 Jun 9;185(12):2184-2199.e16. (PMID: 35649412)
Neuro Oncol. 2012 Feb;14(2):132-44. (PMID: 22067563)
Front Immunol. 2023 Dec 28;14:1297932. (PMID: 38213329)
Neuro Oncol. 2022 Nov 2;24(11):1935-1949. (PMID: 35511454)
Nat Genet. 2025 May;57(5):1168-1178. (PMID: 40346362)
Clin Exp Med. 2024 Jan 27;24(1):15. (PMID: 38280119)
Cancer Innov. 2024 Sep 09;3(5):e139. (PMID: 39257440)
Front Mol Neurosci. 2022 Oct 04;15:1017568. (PMID: 36267699)
Cancer Cell. 2023 Jun 12;41(6):1134-1151.e10. (PMID: 37172581)
J Exp Med. 2012 Jun 4;209(6):1153-65. (PMID: 22615130)
Neuro Oncol. 2011 Jul;13(7):736-47. (PMID: 21642372)
Lab Invest. 2016 Feb;96(2):137-50. (PMID: 26641068)
Cancer Immunol Immunother. 2015 Apr;64(4):419-27. (PMID: 25555571)
Br J Pharmacol. 2013 Feb;168(3):591-606. (PMID: 23062197)
Br J Cancer. 2021 Jul;125(1):28-37. (PMID: 33941878)
Neuro Oncol. 2021 Mar 25;23(3):356-375. (PMID: 33367885)
Immunity. 2021 May 11;54(5):875-884. (PMID: 33979585)
Cell. 2014 Apr 24;157(3):580-94. (PMID: 24726434)
Mol Cancer Ther. 2021 Jul;20(7):1305-1315. (PMID: 34001635)
Cancer Immunol Res. 2017 Jan;5(1):3-8. (PMID: 28052991)
Immunity. 2020 Aug 18;53(2):335-352.e8. (PMID: 32610077)
JCI Insight. 2021 Aug 9;6(15):. (PMID: 34228647)
Cell. 2020 Jun 25;181(7):1643-1660.e17. (PMID: 32470396)
Cell Rep. 2023 Mar 28;42(3):112235. (PMID: 36920905)
Genes Dev. 2019 May 1;33(9-10):498-510. (PMID: 30842215)
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9020-9029. (PMID: 30996127)
Cancer Res. 2021 Feb 1;81(3):658-670. (PMID: 33262126)
Sci Immunol. 2021 Oct 29;6(64):eabi8800. (PMID: 34714687)
Cell. 2019 Aug 8;178(4):835-849.e21. (PMID: 31327527)
Cancer Cell. 2020 May 11;37(5):630-636. (PMID: 32396858)
Nature. 2020 Apr;580(7804):517-523. (PMID: 32322066)
Gut. 2021 Sep;70(9):1713-1723. (PMID: 33087490)
Cancer Discov. 2020 Aug;10(8):1210-1225. (PMID: 32300059)
Cancer Cell. 2022 Jul 11;40(7):701-702. (PMID: 35714604)
Oncogene. 2017 Mar;36(11):1461-1473. (PMID: 27617575)
Sci Signal. 2012 Apr 10;5(219):pe15. (PMID: 22494969)
Cancer Cell. 2010 May 18;17(5):497-509. (PMID: 20478531)
Trends Immunol. 2016 Mar;37(3):208-220. (PMID: 26858199)
Cell. 2021 Mar 4;184(5):1281-1298.e26. (PMID: 33592174)
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12006-11. (PMID: 23754388)
Cancer Cell. 2021 Jun 14;39(6):779-792.e11. (PMID: 34087162)
Nat Neurosci. 2021 Apr;24(4):595-610. (PMID: 33782623)
Nature. 2005 Oct 27;437(7063):1370-5. (PMID: 16251967)
Mol Cancer. 2025 Jun 10;24(1):171. (PMID: 40495229)
Nat Commun. 2020 Aug 6;11(1):3912. (PMID: 32764562)
J Exp Med. 2012 Aug 27;209(9):1611-27. (PMID: 22908324)
Nat Genet. 2021 Oct;53(10):1456-1468. (PMID: 34594038)
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20224-9. (PMID: 24277854)
Elife. 2020 Sep 10;9:. (PMID: 32909947)
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4470-5. (PMID: 27044097)
J Transl Med. 2014 Apr 29;12:107. (PMID: 24779345)
Cell. 2020 Jun 25;181(7):1626-1642.e20. (PMID: 32470397)
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2219199120. (PMID: 36724255)
Nat Med. 2009 Jan;15(1):110-6. (PMID: 19122659)
Cancer Cell. 2024 Mar 11;42(3):358-377.e8. (PMID: 38215747)
Nature. 2015 Jul 9;523(7559):231-5. (PMID: 25970248)
Immunity. 2019 May 21;50(5):1317-1334.e10. (PMID: 30979687)
Cancer Res. 2007 Jan 1;67(1):425; author reply 426. (PMID: 17210725)
Nat Med. 2019 Mar;25(3):462-469. (PMID: 30742119)
Front Oncol. 2020 Feb 18;10:165. (PMID: 32133298)
J Immunol. 2005 Oct 1;175(7):4686-96. (PMID: 16177116)
Immunity. 2018 Dec 18;49(6):1148-1161.e7. (PMID: 30552023)
Grant Information: K22 CA258410 United States CA NCI NIH HHS; R01 NS118929 United States NS NINDS NIH HHS; R21 EB031982 United States EB NIBIB NIH HHS; T32 CA251062 United States CA NCI NIH HHS; R35 CA197743 United States CA NCI NIH HHS; R01 NS100808 United States NS NINDS NIH HHS; U01 CA261842 United States CA NCI NIH HHS; R01 CA208205 United States CA NCI NIH HHS; R01 CA247441 United States CA NCI NIH HHS; W81XWH-19-1-0723 DOD | U.S. Army (USA); U01 CA224348 United States CA NCI NIH HHS; R01 MH110438 United States MH NIMH NIH HHS; R01 CA259253 United States CA NCI NIH HHS; T32 HL007627 United States HL NHLBI NIH HHS
Contributed Indexing: Keywords: Wnt7b/β-catenin; dendritic cells; glioblastoma; immunotherapy; stem cells
Substance Nomenclature: 0 (Programmed Cell Death 1 Receptor)
0 (Immune Checkpoint Inhibitors)
0 (Wnt Proteins)
0 (beta Catenin)
0 (2-(4-(2-methylpyridin-4-yl)phenyl)-N-(4-(pyridin-3-yl)phenyl)acetamide)
0 (Pyridines)
0 (Benzeneacetamides)
Entry Date(s): Date Created: 20250915 Date Completed: 20250916 Latest Revision: 20251027
Update Code: 20251028
PubMed Central ID: PMC12478157
DOI: 10.1073/pnas.2414941122
PMID: 40953263
Datenbank: MEDLINE
Beschreibung
Abstract:Competing Interests: Competing interests statement:R.K.J. received consultant fees from SynDevRx; owns equity in Accurius, Enlight, and SynDevRx; served on the Board of Trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund, and Tekla World Healthcare Fund; and received research grants Sanofi. L.L.M. receives equity from Bayer and is a consultant for SimBiosys. No funding or reagents from these organizations were used in this study. S.K. is a current employee of and a holder of stock options with Agenus Inc. Other co-authors have no conflict of interest to declare.<br />Wnt signaling plays a crucial role for many developmental processes. It is also pivotal in the generation and limited treatment outcomes of glioblastoma (GBM). Here, we identified Wnt7b, which is markedly upregulated in GBM patients, as a determinant of resistance to immune checkpoint blockers (αPD1; anti-Programmed Cell Death Protein 1) in a clinically relevant, αPD1-resistant GBM murine model with abundant stem cells. We observed that increased levels of Wnt7b and β-catenin correlated with the resistance to αPD1. Treatment combining a porcupine inhibitor WNT974 with αPD1 reprogrammed the immune suppressive tumor microenvironment (TME) to bolster antitumor immune responses and extended the survival of mice bearing orthotopic GBM, with 25% long-term survivors. Our causal studies revealed that WNT974 potentiated αPD1 therapy by the expansion of antigen presenting DC3-like dendritic cells (DCs). Additionally, WNT974 combination with αPD1 was associated with a reduction in immune suppressive granulocytic myeloid-derived suppressor cells (MDSCs), an increase in the Ki67+CD8/Ki67+regulatory T cells (Treg) ratio, tilting the CD8:Treg balance in the TME toward antitumor immune response, and more pronounced GrzB+CD8+ effector T cells. Conversely, an increase in monocytic MDSCs and phosphorylation of pro-oncogenic proteins was associated with resistance to the combination therapy. Collectively, our preclinical findings provide a strong rationale to test Wnt7b/β-catenin inhibition with αPD1 therapy in GBM patients with elevated Wnt7b/β-catenin signaling.
ISSN:1091-6490
DOI:10.1073/pnas.2414941122