How big data analytics can strengthen large-scale food fortification and biofortification decision-making: A scoping review.

Uložené v:
Podrobná bibliografia
Názov: How big data analytics can strengthen large-scale food fortification and biofortification decision-making: A scoping review.
Autori: Walsh F; Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany.; Mesurado Cooperative, Boston, Massachusetts, USA., Zhenchuk A; BioAnalyt, Teltow, Germany., Luthringer C; BioAnalyt, Teltow, Germany., Kratz C; BioAnalyt, Teltow, Germany., Schweigert F; BioAnalyt, Teltow, Germany.; Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
Zdroj: Annals of the New York Academy of Sciences [Ann N Y Acad Sci] 2025 Oct; Vol. 1552 (1), pp. 78-93. Date of Electronic Publication: 2025 Sep 10.
Spôsob vydávania: Journal Article; Scoping Review; Review
Jazyk: English
Informácie o časopise: Publisher: New York Academy of Sciences Country of Publication: United States NLM ID: 7506858 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-6632 (Electronic) Linking ISSN: 00778923 NLM ISO Abbreviation: Ann N Y Acad Sci Subsets: MEDLINE
Imprint Name(s): Publication: 2006- : New York, NY : Malden, MA : New York Academy of Sciences ; Blackwell
Original Publication: New York, The Academy.
Výrazy zo slovníka MeSH: Food, Fortified* , Big Data* , Decision Making* , Biofortification*/methods, Humans ; Data Analytics
Abstrakt: Big data analytics have shown great potential to improve decision-making in health, including disease surveillance and healthcare delivery. This scoping review explores how big data supports decision-making in large-scale food fortification (LSFF) and biofortification across the food value chain. Following PRISMA guidelines, we analyzed open-access peer-reviewed literature and gray literature from 2012 to 2022. Given the limited literature, we broadened our search to include big data applications in agriculture and nutrition, aiming to draw relevant insights for LSFF and biofortification. Of 1678 records, 28 mentioned LSFF or biofortification, all published between 2018 and 2022. Overall, most records focused on production (60%) and inputs (19.5%). Notably, 16.7% (n = 7) of records mentioning LSFF or biofortification addressed public health monitoring, compared to 2.3% (n = 45) of those without a mention. Use case examples include blockchain and Internet of Things (IoT) for fortified product traceability, machine learning to predict fortification gaps, and artificial intelligence to analyze anemia prevalence, highlighting opportunities to enhance both production and public health monitoring. Despite this potential, big data use in LSFF and biofortification remains limited. Expanding its use in underexplored areas, such as distribution and regulation, could enhance decision-making, efficiency, and sustainability in LSFF and biofortification.
(© 2025 The Author(s). Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of The New York Academy of Sciences.)
References: Sci Rep. 2021 Apr 15;11(1):8292. (PMID: 33859261)
Bull World Health Organ. 2016 Aug 1;94(8):631-2. (PMID: 27516642)
Sensors (Basel). 2021 Oct 18;21(20):. (PMID: 34696123)
Nutrients. 2020 Jan 29;12(2):. (PMID: 32013129)
PLoS One. 2021 Jun 17;16(6):e0253172. (PMID: 34138925)
Sensors (Basel). 2020 Mar 27;20(7):. (PMID: 32230866)
J Am Assoc Nurse Pract. 2017 Jan;29(1):12-16. (PMID: 27245885)
Socioecon Plann Sci. 2023 Feb;85:101417. (PMID: 35999842)
Food Nutr Bull. 2010 Mar;31(1):118-29. (PMID: 20461909)
Res Synth Methods. 2014 Dec;5(4):371-85. (PMID: 26052958)
Foods. 2022 Aug 11;11(16):. (PMID: 36010409)
Multimed Tools Appl. 2023;82(14):21243-21277. (PMID: 36276604)
Sensors (Basel). 2020 Jul 29;20(15):. (PMID: 32751366)
Foods. 2021 Jul 01;10(7):. (PMID: 34359391)
Nutr Rev. 2022 May 9;80(6):1711-1722. (PMID: 34757399)
Sci Rep. 2022 May 25;12(1):8793. (PMID: 35614333)
Front Microbiol. 2021 Apr 13;12:643604. (PMID: 33967981)
Plants (Basel). 2022 May 02;11(9):. (PMID: 35567232)
Sci Total Environ. 2021 Nov 10;794:148539. (PMID: 34323742)
PLoS One. 2020 Jun 29;15(6):e0229881. (PMID: 32598391)
Public Health Nutr. 2022 Feb;25(2):269-280. (PMID: 34620263)
Front Microbiol. 2021 May 21;12:668196. (PMID: 34093486)
Foods. 2021 Sep 17;10(9):. (PMID: 34574314)
Future Foods. 2022 Dec;6:100198. (PMID: 36276606)
Lancet. 2008 Jan 19;371(9608):243-60. (PMID: 18207566)
Int J Environ Res Public Health. 2021 Nov 30;18(23):. (PMID: 34886362)
Waste Manag. 2019 Mar 15;87:387-397. (PMID: 31109539)
Ann N Y Acad Sci. 2025 Oct;1552(1):78-93. (PMID: 40930112)
Lancet. 2013 Aug 3;382(9890):452-477. (PMID: 23746776)
Front Nutr. 2022 Mar 23;8:795802. (PMID: 35402471)
Sensors (Basel). 2022 Aug 04;22(15):. (PMID: 35957377)
Am J Clin Nutr. 2021 Sep 1;114(3):862-870. (PMID: 34036318)
Sensors (Basel). 2022 May 31;22(11):. (PMID: 35684829)
Front Health Serv Manage. 2017 Jan;33(1):1-6. (PMID: 28225441)
Nutrients. 2021 Mar 29;13(4):. (PMID: 33805305)
Yearb Med Inform. 2018 Aug;27(1):234-236. (PMID: 29681028)
Ann N Y Acad Sci. 2014 Dec;1331:278-295. (PMID: 25514866)
Eur J Public Health. 2019 Oct 1;29(Supplement_3):23-27. (PMID: 31738444)
Food Nutr Bull. 2015 Mar;36(1):3-13. (PMID: 25898711)
JMIR Public Health Surveill. 2018 Jun 06;4(2):e57. (PMID: 29875090)
Sci Rep. 2021 Nov 4;11(1):21678. (PMID: 34737325)
Grant Information: Agreement 0143-ISG Government of Canada; Nutrition International; Agreement 2022/1233773-0 International WHO_ World Health Organization
Contributed Indexing: Keywords: artificial intelligence; big data analytics; biofortification; food value chain; large‐scale food fortification; machine learning; nutrition
Entry Date(s): Date Created: 20250910 Date Completed: 20251031 Latest Revision: 20251102
Update Code: 20251102
PubMed Central ID: PMC12576868
DOI: 10.1111/nyas.70028
PMID: 40930112
Databáza: MEDLINE
Popis
Abstrakt:Big data analytics have shown great potential to improve decision-making in health, including disease surveillance and healthcare delivery. This scoping review explores how big data supports decision-making in large-scale food fortification (LSFF) and biofortification across the food value chain. Following PRISMA guidelines, we analyzed open-access peer-reviewed literature and gray literature from 2012 to 2022. Given the limited literature, we broadened our search to include big data applications in agriculture and nutrition, aiming to draw relevant insights for LSFF and biofortification. Of 1678 records, 28 mentioned LSFF or biofortification, all published between 2018 and 2022. Overall, most records focused on production (60%) and inputs (19.5%). Notably, 16.7% (n = 7) of records mentioning LSFF or biofortification addressed public health monitoring, compared to 2.3% (n = 45) of those without a mention. Use case examples include blockchain and Internet of Things (IoT) for fortified product traceability, machine learning to predict fortification gaps, and artificial intelligence to analyze anemia prevalence, highlighting opportunities to enhance both production and public health monitoring. Despite this potential, big data use in LSFF and biofortification remains limited. Expanding its use in underexplored areas, such as distribution and regulation, could enhance decision-making, efficiency, and sustainability in LSFF and biofortification.<br /> (© 2025 The Author(s). Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of The New York Academy of Sciences.)
ISSN:1749-6632
DOI:10.1111/nyas.70028