Magnitude processing and integration entail perceptual processes independent from the task.
Gespeichert in:
| Titel: | Magnitude processing and integration entail perceptual processes independent from the task. |
|---|---|
| Autoren: | Togoli I; Institut de recherche en sciences psychologiques (IPSY) et en Neurosciences (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium.; Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy., Collignon O; Institut de recherche en sciences psychologiques (IPSY) et en Neurosciences (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium.; HES-SO Valais-Walis, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland., Bueti D; Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy., Fornaciai M; Institut de recherche en sciences psychologiques (IPSY) et en Neurosciences (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium.; Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy. |
| Quelle: | Imaging neuroscience (Cambridge, Mass.) [Imaging Neurosci (Camb)] 2025 Feb 24; Vol. 3. Date of Electronic Publication: 2025 Feb 24 (Print Publication: 2025). |
| Publikationsart: | Journal Article |
| Sprache: | English |
| Info zur Zeitschrift: | Publisher: The MIT Press Country of Publication: United States NLM ID: 9918663686606676 Publication Model: eCollection Cited Medium: Internet ISSN: 2837-6056 (Electronic) Linking ISSN: 28376056 NLM ISO Abbreviation: Imaging Neurosci (Camb) Subsets: PubMed not MEDLINE |
| Imprint Name(s): | Original Publication: Cambridge, Massachusetts : The MIT Press, [2023]- |
| Abstract: | The magnitude dimensions of visual stimuli, such as their numerosity, duration, and size, are intrinsically linked, leading to mutual interactions across them. However, it remains debated whether such interactions, or "magnitude integration" effects, arise from perceptual processes that are independent from the task performed, or whether they arise from high-level decision-making processes. We address this question with two electroencephalography (EEG) experiments in which participants watched a series of dot-array stimuli modulated in numerosity, duration, and item size, in two separate conditions. In the "magnitude task" condition, participants judged either the numerosity, duration, or size of each stimulus. In the "contrast task" condition, instead, a separate group of participants performed a contrast oddball task, never attending or judging the magnitude of the stimuli. The results of the magnitude task first show robust integration effects across the three dimensions. Then, we compare the neural responses to magnitude across the two task conditions. This comparison shows very similar brain responses irrespective of the task, within a series of latency windows whereby the modulation of response amplitude can predict the behavioral magnitude integration effect (~150 and ~250 ms post-onset for numerosity and size; ~300 ms post-offset for the effect of duration). To better assess the similarity of brain responses to magnitude irrespective of the task, we use a cross-condition multivariate decoding analysis. This analysis demonstrates that brain responses in the magnitude task can predict the responses in the contrast task, at multiple latencies starting from early processing stages (~120 ms). These results suggest that magnitude processing and integration likely involve perceptual processes that are engaged irrespective of the task, thus independently from decision making, although the effect of duration on other magnitudes may also involve post-perceptual processes such as working memory. (© 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.) |
| Competing Interests: | The authors declare no competing interest. |
| References: | Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13525-30. (PMID: 26483452) PLoS One. 2013 Dec 05;8(12):e82122. (PMID: 24339998) Trends Cogn Sci. 2003 Nov;7(11):483-8. (PMID: 14585444) J Cogn Neurosci. 2020 Jan;32(1):141-154. (PMID: 31560267) PLoS Biol. 2019 Mar 21;17(3):e3000026. (PMID: 30897088) J Neurosci. 2021 May 19;41(20):4514-4523. (PMID: 33833083) Proc Biol Sci. 2021 Sep 29;288(1959):20211577. (PMID: 34547911) Front Hum Neurosci. 2022 Nov 01;16:1014703. (PMID: 36393989) Vision Res. 1979;19(5):515-22. (PMID: 483579) Neuroimage. 2024 Feb 1;286:120515. (PMID: 38216105) J Vis. 2022 Oct 4;22(11):11. (PMID: 36259675) Cereb Cortex. 2022 Sep 4;32(18):4068-4079. (PMID: 35024791) Neuroimage. 2022 Dec 1;264:119707. (PMID: 36341952) Cereb Cortex. 2016 Feb;26(2):748-763. (PMID: 25715283) J Vis. 2007 Jul 06;7(10):2.1-5. (PMID: 17997671) Brain Cogn. 2018 Jun;123:92-102. (PMID: 29550507) Percept Psychophys. 1991 Dec;50(6):565-74. (PMID: 1780204) Front Hum Neurosci. 2014 Apr 14;8:213. (PMID: 24782741) Cognition. 2015 Sep;142:247-65. (PMID: 26056747) Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7836-41. (PMID: 9636237) Trends Cogn Sci. 2022 Jan;26(1):11-24. (PMID: 34702662) Nat Commun. 2022 Jul 8;13(1):3952. (PMID: 35804026) Cognition. 2015 Mar;136:268-81. (PMID: 25506776) Neuroimage. 2016 Apr 1;129:72-79. (PMID: 26808331) Behav Brain Funct. 2007 Jan 10;3:1. (PMID: 17214890) J Cogn Neurosci. 2025 Feb 01;37(2):498-514. (PMID: 39436233) Cortex. 2019 May;114:17-27. (PMID: 30219571) Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1831-40. (PMID: 19487186) J Vis. 2012 Jul 20;12(7):. (PMID: 22822089) Spat Vis. 1997;10(4):437-42. (PMID: 9176953) Neuroimage. 2022 Aug 15;257:119336. (PMID: 35643266) Cortex. 2019 May;114:67-75. (PMID: 30032863) Percept Psychophys. 2001 Nov;63(8):1293-313. (PMID: 11800458) Curr Biol. 2004 Feb 3;14(3):257-62. (PMID: 14761661) Proc Biol Sci. 2023 May 10;290(1998):20230260. (PMID: 37161323) Neuroimage. 2017 Aug 15;157:429-438. (PMID: 28583882) Atten Percept Psychophys. 2022 Feb;84(2):347-351. (PMID: 35174467) Neuroimage. 2017 Feb 15;147:143-151. (PMID: 27939922) Science. 2013 Sep 6;341(6150):1123-6. (PMID: 24009396) PLoS One. 2012;7(7):e41496. (PMID: 22911801) Neuropsychologia. 2017 Aug;103:12-19. (PMID: 28669896) Cognition. 2008 Feb;106(2):579-93. (PMID: 17509553) J Neurosci. 2023 May 24;43(21):3860-3875. (PMID: 37085319) Front Psychol. 2013 Nov 05;4:803. (PMID: 24204352) Cogn Psychol. 2018 Nov;106:21-42. (PMID: 30165241) J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499) J Cogn Neurosci. 2018 Dec;30(12):1788-1802. (PMID: 30063175) |
| Contributed Indexing: | Keywords: EEG; magnitude integration; magnitude perception; numerosity perception; size perception; time perception |
| Entry Date(s): | Date Created: 20250813 Latest Revision: 20250816 |
| Update Code: | 20250816 |
| PubMed Central ID: | PMC12319895 |
| DOI: | 10.1162/imag_a_00485 |
| PMID: | 40800801 |
| Datenbank: | MEDLINE |
| Abstract: | The magnitude dimensions of visual stimuli, such as their numerosity, duration, and size, are intrinsically linked, leading to mutual interactions across them. However, it remains debated whether such interactions, or "magnitude integration" effects, arise from perceptual processes that are independent from the task performed, or whether they arise from high-level decision-making processes. We address this question with two electroencephalography (EEG) experiments in which participants watched a series of dot-array stimuli modulated in numerosity, duration, and item size, in two separate conditions. In the "magnitude task" condition, participants judged either the numerosity, duration, or size of each stimulus. In the "contrast task" condition, instead, a separate group of participants performed a contrast oddball task, never attending or judging the magnitude of the stimuli. The results of the magnitude task first show robust integration effects across the three dimensions. Then, we compare the neural responses to magnitude across the two task conditions. This comparison shows very similar brain responses irrespective of the task, within a series of latency windows whereby the modulation of response amplitude can predict the behavioral magnitude integration effect (~150 and ~250 ms post-onset for numerosity and size; ~300 ms post-offset for the effect of duration). To better assess the similarity of brain responses to magnitude irrespective of the task, we use a cross-condition multivariate decoding analysis. This analysis demonstrates that brain responses in the magnitude task can predict the responses in the contrast task, at multiple latencies starting from early processing stages (~120 ms). These results suggest that magnitude processing and integration likely involve perceptual processes that are engaged irrespective of the task, thus independently from decision making, although the effect of duration on other magnitudes may also involve post-perceptual processes such as working memory.<br /> (© 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.) |
|---|---|
| ISSN: | 2837-6056 |
| DOI: | 10.1162/imag_a_00485 |
Full Text Finder
Nájsť tento článok vo Web of Science